
Heterogeneity, Production Networks and the
Economic Impact of Weather Shocks

Christian Velasquez∗

November, 2023

Abstract

This paper studies the macroeconomic implications of state and sector specific
sensitivity to weather fluctuations and interregional production networks in the United
States. I build a general equilibrium model where the impact of weather fluctuations
on productivity is state-sector dependent, and networks expose sectors to weather
shocks from other regions through the use of intermediate inputs. I use annual data
on sectoral GDP and weather by state from 1970 to 2019 to quantify these mechanisms.
My estimates show that models that do not consider these characteristics underesti-
mate the aggregate impact of weather fluctuations by at least a factor of 3. In particular,
when the whole economy faces an unexpected increase in temperature of 1 Celsius
degree, the contraction in economic activity increases from -0.13 to -0.37 percent once
heterogeneity is considered and to -1.14 percent when networks are included.
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1 Introduction

Climate change has attracted the attention of economists and policymakers, prompt-
ing efforts to study how it affects the economy. One of the several consequences of these
phenomena is the increase in the variability of weather fluctuations. Here, weather refers
to short-term realizations of climatological patterns. These fluctuations can be particularly
harmful for some regions and sectors while beneficial for others due to the differences in
the sensitivity to changes in weather.1 The impact of these fluctuations extends beyond
their local effects, as they propagate throughout the whole economy due to the economic
linkages across regions and sectors. Therefore, accounting for these channels is essential
to quantify the aggregate effect of weather fluctuations in the economy. In this paper, I
study the implications on the United States economic activity, resulting from the hetero-
geneous sensitivity to weather anomalies across states and sectors and the role played by
economic linkages when modeled as production networks.

My analysis starts by building a multi-region and multi-sector general equilibrium
model with production networks and regional weather fluctuations. In this economy,
sectors within the same region use production from other regions as inputs. Weather
fluctuations play a role in the model by directly affecting sectoral production through
changes in productivity.2 These sensitivities are region-sector dependent. Sectors are also
exposed indirectly to weather fluctuations from other states by consuming intermediate
inputs produced in those regions. The model provides an econometric specification that
connects weather fluctuations and real GDP growth rates and an aggregation rule that
guides my empirical analysis.

I implement this exercise using state-level data on sectoral production and temper-
ature anomalies. My results show that no accounting for heterogeneous sensitivities to
weather shocks and economic linkages underestimates the aggregate effect of weather
fluctuations by at least two-thirds and that the additional effect caused by the networks
is more critical than the explained by sensitivity heterogeneity. In particular, I show that
a sudden increase in temperature of 1 Celsius degree reduces real gross production by
0.37 percent in the model with only heterogeneous sensitivities. The contraction goes up
to 1.14 percent when production networks are included. Omitting both of these channels

1Dell, Jones and Olken (2012), Colacito, Hoffmann and Phan (2018), and Hennessy and Lawrence (2022)
2Hancock, Ross and Szalma (2007) shows the negative relationship between task performance and

thermal stressors.
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leads to an estimate of 0.13 percent.

To show the presence of heterogeneous sensitivities to weather fluctuations across
regions and sectors, I first present a simplified version of the baseline economy without
network connections. Following the literature, I allow the impact of weather on produc-
tivity to be nonlinear. In the empirical implementation, I use annual data for 48 states and
59 sectors from 1970 to 2019.3 I approximate weather fluctuations with deviations in an-
nual temperature from their average in the last decade. This approach reduces concerns
regarding adaptation and anticipation mechanisms. My results confirm that weather
fluctuations impact states and sectors heterogeneously in a nonlinear form. At the state
level, an unanticipated small temperature increase of 0.5 standard deviations, around 0.3
Celsius, leads to significant negative responses in 25% of the states. In contrast, a large
temperature shock of 1.5 standard deviations, approximately 1 Celsius degrees, contracts
economic activity in 35% states with an average fall -among these states- of around 1.1
percent. In both scenarios, Louisiana and New Jersey would be most affected by these
shocks. At the industry level, a small temperature fluctuation would reduce the economic
activity in agriculture, utilities, and real estate but increase the production in healthcare,
management, and finance. In contrast, no industry reacts positively when the economy
faces a large weather fluctuation.

Next, I add production networks to measure the role played by inter-regional and
inter-sectoral linkages. This addition introduces two channels that may change the overall
impact of weather fluctuations compared with an economy without connections. First,
in an economy with networks, regional producers use final goods from other regions as
inputs. Therefore, negative weather shocks that affect the productivity of input providers
also affect the sectors that demand those inputs through, for instance, higher prices.
Thus, production networks lead to indirect exposure to weather fluctuations from other
regions.4 Second, production networks allow the partial mitigation of the impact of local
weather fluctuations. The mitigation comes from the heterogeneous exposure of weather
shocks across regions and the ability of producers to substitute local inputs with ones
produced in regions that get hit less severely by these shocks. To model production
networks, I assume that sectoral production functions are Cobb-Douglas with constant
returns to scale. This specification allows me to obtain a well-defined solution where

3See for example Burke, Hsiang and Miguel (2015)
4See Acemoglu et al. (2012), Carvalho (2007), Barrot (2016), Caliendo et al. (2018) for more details about

how production networks propagate local shock throughout the economy

3



the Leontief inverse matrix summarizes the interactions across regions and sectors. To
calibrate these parameters, I use data from the Commodity Flow Survey and the USE table.
My estimates show that accounting by production networks increases the negative effects
of an unanticipated weather shock common to all states. At the geographic level, 66%
of the states show significant negative responses when the economy faces a large shock.
In particular, Louisiana (-3.5%), Utah (-2.5%), and New Jersey (-2.3%) are the states most
affected by these shocks. At the sectoral level, production of 70% of the sectors reduces,
with agriculture (-4.5%), durable manufacturing (-2.5%), and non-durable manufacturing
(-2.0%) showing the largest contractions. Moreover, the positive effects on healthcare,
management, and finance after small shocks disappear.

When the set of policy instruments is limited, policymakers need to understand
whether variations in the impact of weather on GDP at the state-sector level are due to
geographical factors or sectoral composition. To address this, I decompose the state-level
effect of temperatures into three components: (i) an economy-wide component, which
shows the common effect across the entire economy; (ii) a structure-driven component
that measures the fraction of the effect explained by differences between a particular
state’s economic structure and the average economic structure of the aggregate economy,
and (iii) a region-based component that takes into account the unique characteristics of
each state. In the absence of networks, around 60 percent of the state-level response is
explained by state-specific factors, while 16 percent can be attributed to sectoral compo-
sition. Introducing networks generates minimal changes as the state-specific factors and
sectoral composition account for 54% and 9% of the response, respectively.

In turn, I assess the implications of omitting heterogeneous sensitivities and pro-
duction networks in measuring the macroeconomic impact of weather fluctuations. My
results show that the omission of production networks and heterogeneous sensitivities
significantly understates the negative effects of weather shocks on economic activity. My
baseline model predicts that an unexpected increase in temperature of 1 Celsius degree
contracts the economy by 1.14 percent. From this reduction, 1.01 is accounted for by the
production networks, while the remaining are due to the direct effect of local weather
fluctuations. When production networks are neglected, this fall goes down to 0.37 per-
cent. If, in addition, we ignore the heterogeneous sensitivity channel, this effect is further
reduced to 0.13 percent. This analysis suggests that ignoring production networks and
heterogeneous sensitivity leads to a significant underestimation of the impact of weather
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shocks on economic activity. The discrepancies between the model with only heteroge-
neous sensitivities and the direct effect of the second model are explained by the omitted
variable bias problem in the former due to the spatial correlation across weather fluc-
tuations. A sensitivity analysis shows that these conclusions are robust to temperature
measurements (average, minimum, or maximum), the choice of a reference point (5-year
window, 10-year window, 20-year window, or 30-year window), and other specifications.
Interestingly, I find that this pattern holds for different shock measures ranging from 0.01
to 1.5 degrees Celsius.

The rest of the paper is organized as follows: Section 2 provides a brief review of
the relevant literature. In Section 3, the simplified version of the model is introduced and
its results are presented. Section 4 presents the main model and its implications at both
the state and sectoral levels. Section 5 discusses the macroeconomic implications of both
models. Section 6 shows a sensitivity analysis based on a common factor model, and
finally, Section 7 concludes the paper.

2 Related Literature

This paper is related to two branches of literature. The first one uses econometric
models, exploiting either geographical or sectoral differences to gauge the economic im-
pact of climate change and weather variations in the United States. Previous research has
shown that climate change’s effect differs across various regions and economic activities.
Dell, Jones and Olken (2012), using annual data from 1950 to 2003, find that temperature
fluctuations decrease the average growth rate of "poorer nations" by 1.3 percent per Celsius
degree but have an almost negligible effect on "wealthier nations". The authors suggest
this is due to better adaptation mechanisms in wealthier countries. This result aligns
with early macro-estimations that did not find a statistically significant effect of tempera-
tures on the United States’ economic activity. However, other researchers have found that
higher temperatures significantly negatively affect the United States. For example, Burke,
Hsiang and Miguel (2015) conducted a differences-in-differences analysis using income
per capita and daily temperature data at the county level in the United States. They
categorized daily temperatures into groups, each impacting economic activity differently.
They found higher temperatures reduce productivity by around 1.7% per Celsius degree.
Moreover, these estimates are not homogenous across geographies or economic sectors.
Hsiang et al. (2017), using multiple models, show that the effect of climate change on the
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United States differs between the north and south regions. On the sectoral dimension,
Colacito, Hoffmann and Phan (2018) show that higher temperatures in the summer cause
a contraction in the gross product of agriculture (-2.20% per Celsius degree), construction
(-0.38%), and services (-0.21%) while many other sectors report no statistically-significant
response. Based on these estimates, nonlinearities and heterogeneity are crucial to ac-
curately quantifying how temperature fluctuations affect economic activity. Although
previous papers have addressed nonlinearities and heterogeneous effects, to my knowl-
edge, my paper is the first to exploit regional and sectoral variation jointly revealing that
the responses to climate change differ across states even for the same sector.

It is important to understand the subtle difference between climate and weather. We
can understand weather as the realization of temperatures, precipitation, wind, and other
variables in a specific geography over days, months, or one year. In contrast, climate would
be the average distribution of such patterns over decades. Dell, Jones and Olken (2014)
explained that using weather variation instead of climate to identify changes in output
sensitivity to temperature is more appropriate since the exogeneity assumption is more
likely to hold. However, due to the high persistence of temperature levels, economic agents
can anticipate future temperatures. Therefore, my paper uses weather fluctuations rather
than levels to mitigate concerns regarding anticipation. I define weather fluctuations as
the annual temperature deviations from their short-run trend.

The second strand comprises papers that use general equilibrium models to analyze
the impact of climate change and weather variability on economic activity in the United
States. For example, Donadelli et al. (2017) built a representative-agent model with re-
cursive preferences and investment adjustment costs. They found that an increase in
temperature costs after one year reduces gross domestic output by -0.5 percent. Among
the set of GE models, my paper is more related to models that incorporate economic
linkages among sectors and regions. Acemoglu et al. (2012), Carvalho and Tahbaz-Salehi
(2019), and Carvalho (2007) briefly introduce and discuss how the input-output linkages
propagate micro shocks through the economy. These connections are especially strong
in the United States, as Barrot (2016) and Caliendo et al. (2018) show. In the context of
climate change, some papers have accounted for production networks. The closest one to
my research is Rudik et al. (2022). They developed a dynamic spatial equilibrium model
with input-output linkages, sector heterogeneity, amenities, labor mobility, and other in-
efficiencies. They find that climate change would reduce welfare in the United States, with
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states in the South being negatively affected while states in the North would experience
positive effects. In this paper, I show that differences in the response to weather across
states are mostly driven by geographical factors rather than sectoral composition, boosting
the role of interregional networks. This dimension is missed in their analysis.

There are certain points to consider in my estimation. First, I do not include no-
weather-related migration flows. For example, as mentioned by Bilal and Rossi-Hansberg
(2023), migration of rich households can produce a spurious relationship between eco-
nomic activity and temperature anomalies. However, this type of spurious relationship
is more likely when the dependent variable is some measure of private income, and it is
less likely in the case of production. In addition, although migration patterns can affect
local impacts (Leduc and Wilson (2023)), its role in the macroeconomic impact looks to
be small, as pointed out by Bilal and Rossi-Hansberg (2023). Second, my estimations are
based on the assumption of a perfect economy with Cobb-Douglas preferences. even this
gives me a simple expression to estimate, which is globally accurate in the case of a Cobb-
Douglas production function and a good first-order approximation for any constant CES
aggregator (Baqaee and Farhi (2019)), their conclusion would be imprecise if the market
is inefficient (see Baqaee and Farhi (2020) and Bigio and La’o (2020)), and a priori, it is not
possible to know the effect of such inefficiencies on my results.

3 The baseline model without interregional connections

In this section, I present a static model where the economy is composed of 𝑁 ge-
ographies, each populated by 𝐽 sectors that produce intermediate goods and one firm that
produces the final good of the region. All of them operate under perfect comp tition. I
denote a particular region and its final good by 𝑛 ∈ {1, . . . , 𝑁} and a particular interme-
diate sector as 𝑗 ∈ {1, ¤,𝐽}. The only factor of production is labor 𝐿, which is inelastically
supplied by a representative household who can freely move it across regions5. The rep-
resentative household derives utility from the consumption of final goods according to a
Cobb-Douglas utility function:

𝑈 =
∏
𝑛

𝑐
𝛽𝑛
𝑛 (1)

where 𝑐𝑛 is the consumption level of the final good produced in the region 𝑛 and 𝛽𝑛 is
a taste pa ameter. Then, the consumer optimization problem is choosing the set of final

5Although restrictive, while firms are price-takers, the conclusions of this model are still valid for the
case with no labor mobility

7



goods {𝑐𝑛}𝑁1 that maximizes 1 subject to the budget constraint
∑

𝑛 𝑝𝑛𝑐𝑛 = 𝑤𝐿, where 𝑤

denotes the nominal wage.

After defining 𝐶 =
∏

𝑛 𝑐
𝛽𝑛
𝑛 as the measure of real consumption, the equilibrium con-

ditions for the households imply that the share of the final good 𝑛 in the total expenditure
of the consumer expenditure is constant and can be used to infer the taste parameters
{𝛽𝑛}𝑁𝑖 :

𝛽𝑛 =
𝑝𝑛𝑐𝑛

𝑃𝐶
=

𝑝𝑛𝑐𝑛

𝑃𝑌
(2)

where 𝑃 =

(∏
𝑛 𝛽

𝛽𝑛
𝑛

)−1 ∏
𝑛 (𝑝𝑛)𝛽𝑛 is the aggregate consumer price index. In equilibrium,

the market clearing conditions imply that aggregate consumption equals aggregate pro-
duction, and therefore, 𝛽𝑛 is not only an expenditure share but also the share of region 𝑛

in the aggregate nominal GDP (𝑃𝑌).

In each region, the production of intermediate goods 𝑦 𝑗
𝑛 uses labor 𝑙 𝑗𝑛 as unique input

but is exposed to a stochastic productivity shifter 𝑧𝑛 𝑗 . These intermediate goods can be
sold only to the final good producer 𝑛, which combines them using a constant return to
scale Cobb-Douglas production tec nology. I assume the following functional forms for
each of these sectors and final producers:

𝑦
𝑗
𝑛 = 𝑧

𝑗
𝑛(�̃�𝑛)

(
𝑙
𝑗
𝑛

)𝛼𝑛

(3)

𝑌𝑛 =
∏
𝑗

(
𝑦
𝑗
𝑛

)𝑏 𝑗𝑛
(4)

where
∑

𝑗 𝑏
𝑗
𝑛 = 1∀𝑛. As usual in the literature, I assume that the productivity shifter

𝑧
𝑗
𝑛(�̃�𝑛) is driven partially by fluctuations in weather conditions of the region 𝑛 denoted as

�̃�𝑛 and that such fluctuations are exogenous to the economic activity in the short-run.

For the final-good producer, the optimality condition 𝑏
𝑗
𝑛 =

𝑝
𝑗
𝑛𝑦

𝑗
𝑛

𝑝𝑛𝑌𝑛
implies that the

production elasticity 𝑏
𝑗
𝑛 can be inferred from the data as the share of the sector 𝑗 in

the nominal GDP of the reg on 𝑛. Moreover, the price index of the region 𝑛 equals
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𝑝𝑛 =
∏

𝑗

(
𝑏
𝑗
𝑛

)−𝑏 𝑗𝑛 ∏
𝑗

(
𝑝
𝑗
𝑛

)𝑏 𝑗𝑛
, leading to the following decomposition:

𝑑 ln 𝑝𝑛 =
∑
𝑗

𝑏
𝑗
𝑛𝑑 ln 𝑝

𝑗
𝑛 (5)

Combining the labor demand function 𝑙
𝑗
𝑛 = 𝛼

𝑗
𝑛
𝑝
𝑗
𝑛𝑦

𝑗
𝑛

𝑤 with the production function of 𝑦
𝑗
𝑛

and assuming constant returns to the scale allows us to express the fluctuations in prices
as a function of changes in productivity and changes in nominal wages

𝑑 ln 𝑝
𝑗
𝑛 = −𝑑 ln 𝑧

𝑗
𝑛(�̃�𝑛) − 𝑑 ln𝑤

Taking into consideration that the share of total sales of the sector 𝑗 in the aggregate
nominal GDP is constant and equal to 𝛽𝑛𝑏

𝑗
𝑛 and using the nominal GDP as numeraire

(𝑑 ln𝑤 = 0) allows us to express the fluctuations of real production as a function of
changes in the weather conditions:

𝑑 ln 𝑦
𝑗
𝑛 =

d ln 𝑧
𝑗
𝑛(�̃�𝑛)

d�̃�𝑛
d�̃�𝑛 = 𝑓

𝑗
𝑛(�̃�𝑛) (6)

Following Burke, Hsiang and Miguel (2015), I consider a nonlinear relationship
between productivity and weather conditions. As shown in appendix B, using a second-
order approximation of 𝑓

𝑗
𝑛(�̃�𝑛), we can express the first log-difference of real production

as:
𝑑 ln 𝑦

𝑗
𝑛 = (�𝑛,1 + �𝑗,1)�̃�𝑛 + (�𝑛,2 + �𝑗,2)�̃�2

𝑛 + 𝜖𝑛𝑗 E[𝜖𝑛𝑗] = 0 (7)

where�𝑛,1 and�𝑛,2 are region-specific coefficients that reflect the common effect of weather
shocks for all sectors located in the same region and �𝑗,1 and �𝑗,2 are sector-specific
coefficients that reflect the common sensitivity to weather shocks of sector 𝑗 across all
locations.

Equation 7 gives me a theoretical regression that I can implement to quantify the direct im-
pact of weather anomalies on the economic activity of the sector-state (𝑗, 𝑛). Additionally,
combining equations 1 and 4 with the market clearing conditions gives us the following
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expression for the fluctuations of aggregate production.

𝑑 ln𝑌 =
∑
𝑛,𝑗

𝛽𝑛𝑏
𝑗
𝑛𝑑 ln 𝑦

𝑗
𝑛 (8)

implying that I can use the shares {𝛽𝑛}𝑁𝑛 and {𝑏 𝑗𝑛}𝑁 ,𝐽
𝑛,𝑗 as weighs to aggregate the impact of

weather shock on 𝑦
𝑗
𝑛 .

3.1 Empirical implementation

In this subsection, I test whether actual data supports that short-run fluctuations
in weather impact heterogeneously across regions and sectors. To examine these rela-
tionships, I employ data from the national accounts and conduct nonlinear panel data
regressions. The Bureau of Economic Analysis (BEA) provides statistics by various levels
of geographical and industry disaggregations. While annual data of production by sector
at the county and Metropolitan Statistical Areas level is available from 2001, state-level
information is accessible from as early as 1963. Since the persistent nature of the climate
conditions, I opted to approximate the regional dimension with state-level data to cover
the largest possible horizon.

For this analysis, I use real gross state product per capita by sector (GSPpc) as the
measure of economic activity. The real GSP is obtained by deflating the nominal GSP with
state-specific consumer prices. In 1997, the BEA changed the classification system from the
Standard Industrial Classification (SIC) to the North American Industrial Classification
System (NAICS), which generated a break in the time series. To handle this problem, I use
the weights from Yuskavage et al. (2007) to chain both systems. Consumer price indexes
were obtained from the Bureau of Labor Statistics. Their data reports price indexes for 21
MSAs and four regions. After that, the dataset is composed of annual information from
1970 to 2019 from about 48 states and 59 sectors that can be aggregated into 20 industries.
A more detailed explanation of the data processing can be found in appendix A

I use short-run temperature fluctuations as a proxy for weather shocks. Although
weather is a complex concept considering variables such as temperature, wind, precip-
itation, moisture, and others, I follow the literature and choose temperature as a proxy
for weather. Nevertheless, there are some drawbacks to using it directly in an econo-
metric analysis. Firstly, since the observed increase in global temperatures may be partly
attributable to elevated levels of CO2 stemming from human activities, a simple regres-
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sion can face a reverse-causality problem. Secondly, the high persistence of temperature
and climate conditions exacerbates the bias caused by omitting variables that control for
any anticipation and adaptation mechanism that economic agents have. To address these
sources of inconsistency, I focus my analysis on short-run movements that can be easily as-
sumed as unanticipated and exogenous from human activity. To do so, I use the following
formula:

�̃�𝑛𝑡 = 𝜏𝑛𝑡 − �̄�𝑛𝑡 �̄�𝑛𝑡
1
10

10∑
𝑠=1

𝜏𝑛𝑡−𝑠 (9)

where 𝜏𝑛𝑡 denotes the average temperature for the state 𝑛 at year 𝑡, and �̄�𝑛𝑡 is the local
trend average temperature in the previous 10 years. In this way, �̃�𝑛𝑚𝑡 captures temperature
fluctuations relative to a local trend. While climatological literature often defines tempera-
ture anomalies as deviations with respect to a 30-year basis, I chose a ten-year basis for my
baseline analysis since many economic decisions with medium and long-run implications,
such as investment plans, have an average window of 8-10 years. Before entering into 10, I
adjusted �̃�𝑛𝑡 by subtracting the mean value specific to each state: �̃�adjusted

𝑛𝑡 = �̃�𝑛𝑡 − 1
𝑇

∑
𝑡 �̃�𝑛𝑡 .

I follow this approach to mitigate any bias caused by possible anticipation of the mean by
economic agents. After this adjustment and to ease exposition, I refer �̃�adjusted

𝑛𝑡 simply as
�̃�𝑛𝑡 for the remainder of the paper. Then, I run the following regression:

Δ�̃� 𝑗,𝑛,𝑡 = 𝛼 + 𝜌 𝑗Δ�̃� 𝑗,𝑛,𝑡−1 +
(
�𝑛,1 + �𝑗,1

)
�̃�𝑛,𝑡 +

(
�2,𝑛 + �𝑗,2

)
�̃�2
𝑛,𝑡 + 𝛾𝑗 + 𝛾𝑡 + 𝛾𝑛 + 𝜖 𝑗,𝑛,𝑡 (10)

where Δ�̃� 𝑗𝑛𝑡 represents the first log-difference of the real output per capita of the
sector 𝑗 located in the state 𝑛 during year 𝑡, and �̃�𝑛𝑡 is my measure of weather shocks for
state 𝑛. This regression incorporates sectoral fixed effects (𝛾𝑗), state fixed effects (𝛾𝑛), and
time fixed effects (𝛾𝑡) to control by unobservable components that can explain differences
in the growth rates across sectors, states and the effects of business cycles or aggregate
shocks. Additionally, the lag of the outcome variable Δ𝑦 𝑗𝑛,𝑡−1 is included to account for
any persistent dynamics inherent in economic variables. Finally, I avoid considering addi-
tional contemporaneous covariates to maintain a parsimonious specification and prevent
potential issues arising from bad controlling (Dell, Jones and Olken (2014)).

Equation 10 accommodates nonlinear effects by including the square of the weather
shock (�̃�2

𝑛𝑡). It permits a different impact between small and large shocks. It is motivated
by the understanding that small changes in temperature could lead to either beneficial or
adverse effects, while in most cases, large changes would have detrimental consequences
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for the economy. In particular, using a meta-analysis of around 300 experiments, Hancock,
Ross and Szalma (2007) show that productivity - measured by task performance- reduces
when people face thermal stressors encompassing both elevated temperatures and cold
conditions. While numerous functions can capture nonlinear relationships, this particular
specification offers some advantages. First, the chosen function is continuously differen-
tiable, enabling an easy computation of results objects such as contemporaneous impacts,
marginal effects, and volatility contributions. Second, I can apply the delta method to
compute confidence intervals, which improves the efficiency of the estimation. Third, it
maintains the parsimonious nature of the model.

In addition, specification 10 examines potential heterogeneities not only across states
but also across sectors. This feature acknowledges the inherent complexity of real-world
economic activities. Economic sectors could exhibit diverse sensitivities to temperature
shocks due to differences in production processes, technology, and exposure.

Figure 1. Distribution of temperature anomalies �̃�: 1970-2019

Note: Distribution of weather fluctuations �̃�. Weather anomalies were constructed as the average
monthly difference between the observed average temperature at month 𝜏𝑚,𝑡 and the average temper-
ature of the previous 10 years for the similar month 𝑡 = 1

10
∑10

𝑙=1 𝜏𝑚,𝑡−𝑙 . Temperatures are expressed
in Celsius degrees.

Moreover, the wide variation of the short-run temperature fluctuations ensures the
identification of the parameters �𝑛,2 and �𝑗,2, which are associated with the nonlinear
effects. This can be confirmed by looking at the histogram displayed in figure 1, which
shows the distribution of the observed weather fluctuations �̃� during my estimation sam-
ple. We can see that large fluctuations are not extreme events. With a standard deviation
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close to 0.67 Celsius degrees, approximately 15 percent of the observed fluctuations are
larger than one Celsius degree in absolute value, while five percent exceed a threshold of
1.4 Celsius degrees.

- Contemporaneous impact of weather fluctuations

A first outcome derived from the aforementioned regression analysis pertains to the
expected contemporaneous impact of a weather fluctuation �̃�0 on the growth rate of the
sector 𝑗 situated in the state 𝑛. I denote this outcome as 𝒢𝑗𝑛 and compute it as showed in
equation 116. 𝒢𝑗𝑛 is standardized per Celsius degree to improve comparability.

𝒢𝑗𝑛(�̃�𝑜𝑛,𝑡) = E

[
Δ𝑦 𝑗,𝑛,𝑡 |�̃�𝑛𝑡=�̃�𝑜 −Δ𝑦 𝑗,𝑛,𝑡 |�̃�𝑛𝑡=0

�̃�𝑜

]
= �̂𝑛,1 + �̂𝑗,1 + �̂𝑛,2�̃�

𝑜
𝑛,𝑡 + �̂𝑗,2�̃�

𝑜
𝑛,𝑡 (11)

Figure 2 displays the expected effect per Celsius of a small weather shock (panel
2a) and a large weather shock (panel 2b) as heatmaps. I define a small weather shock
as an increase of temperature by 0.5 standard deviations, which is close to the average
increase in average temperature by decade in the last 30 years7 and a large weather shock
as 1.5 standard deviations which is around 1 Celsius degree. In each heatmap, the cell
positioned at the intersection of row 𝑙 and column 𝑔 denotes the contemporaneous impact
of a weather shock on the growth rate of the industry 𝑗 within the state 𝑛. These industry
results were calculated as the weighted average of the sectoral responses using the share
on sectoral GSP as a share of the total GSP as weighs, 𝒢𝑙𝑛(�̃�𝑜𝑛,𝑡) =

∑
𝑗∈𝑙

∑
𝑡 𝐺𝑆𝑃𝑗𝑛,𝑡∑

𝑗∈𝑙,𝑡 𝐺𝑆𝑃𝑗𝑛,𝑡
∗ 𝒢𝑗𝑛(�̃�𝑜𝑛,𝑡).

Shades of blue denote positive impacts, while hues of red are associated with negative
ones. Furthermore, as in any heatmap, the intensity of the color is linked to the magnitude
of the impact, with larger responses, regardless of the sign, being depicted with more
saturated colors.

The results from both panels underscore the presence of heterogeneities across sec-
tors and states, alongside the differences that emerge between small and large weather
fluctuations due to the nonlinear dynamics embodied in the regression. Mild and oc-
casionally positive impacts characterize the effects of small shocks, while large shocks

6with a variance: 𝜎2
�̂𝑛,1

+ 𝜎2
�̂𝑗,1

+ (�̃�𝑜)2
(
𝜎2
�̂𝑛,2

+ 𝜎2
�̂𝑗,2

)
+ 2𝜎�̂𝑛,1 ,�̂𝑗,1

+ 2�̃�𝑜
[
𝜎�̂𝑛,1 ,�̂𝑛2

+ 𝜎�̂𝑛,1 ,�̂𝑗,2
+ 𝜎�̂𝑗,1 ,�̂𝑛,2

+ 𝜎�̂𝑗,1 ,�̂𝑗,2

]
+

2(�̃�𝑜)2𝜎�̂𝑛,2 ,�̂𝑗,2
7As reported by the NOAA, the average increase in temperature per decade was around 0.27 Celsius

degree since 1980.
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Figure 2. Contemporaneous impact of weather fluctuations on growth rate by sector-state

(a) Small shock: �̃�𝑜 = 0.5𝜎�̃�

(b) Large shock: �̃�𝑜 = 1.5𝜎�̃�

Note: Panels (a) and (b) showed the difference in the growth rate with respect to a scenario with no weather
shock �̃� = 0. Changes are reported per unit Celsius to allow comparison between the two shocks. A small
shock equals 0.5 standard deviations of �̃� being approximately 0.3 Celsius degree, while a large shock is
defined as 1.5 standard deviations (close to one Celsius degree). Reductions in the growth rate are shaded
in red, while increments are in blue.

mainly yield larger and negative outcomes. This is particularly seen in states like Arizona,
Alabama, New Mexico, and Virginia. In those states, a small weather shock induces
a rise in the economic activity of some sectors, such as manufacturing of durable and
nondurable goods, entertainment, finance, and health care. Conversely, large weather
shocks contract the performance of almost every sector. As expected, agriculture is the
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Figure 3. Distribution of 𝒢𝑙𝑛(�̃�𝑜)

Note: Figure plots a comparison between the distributions of 𝒢𝑙𝑛 under both sizes of shocks.

sector more negatively impacted by weather fluctuations. This impact seems to be evenly
distributed across states when contrasted with other sectors. At a geographical level,
Connecticut, Delaware, Louisiana, New Jersey, and New Mexico appear as the states most
negatively affected by a large temperature rise. Interestingly, temperature increments look
to be beneficial for Georgia. This could be related to migration patterns and housing con-
ditions, which attract people from close but more expensive states like Florida. However,
a more rigorous analysis is required to verify the validity of the results for those states.

To conclude with this part, in Figure 3, I compare the distribution of 𝒢𝑙 𝑔 under
both types of shocks. The dashed blue line denotes the histogram of 𝒢𝑙 𝑔 induced by a
small �̃�, whereas the shade red histogram is related to large fluctuations. This contrast
reveals a discernible shift towards the left under the influence of a large weather shock,
where the simple average impact per unit Celsius passes from -0.19% to -0.45%. This is
accompanied by a spreader distribution; the variance increases from 0.74 to 1.17, leading
to the emergence of a "fat left tail". These changes support the relevance of the nonlinear
effects, highlighting the more pronounced negative effects on economic growth rates due
to larger weather shocks.
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- Impact of weather shocks at the state and sectoral level

A second outcome derived from regression 10 encompasses the aggregate effects
across multiple dimensions. Those include the impact at the state level denoted by
𝒢𝑛(�̃�𝑜𝑛,𝑡), at the industry level represented as 𝒢𝑗(�̃�𝑜𝑛,𝑡). As shown by equation 8, I can
compute each of these objects using the following relations:

𝒢𝑛(�̃�𝑜𝑛,𝑡) =
∑

𝑗 𝑤
𝑎
𝑗𝑛
𝒢𝑗𝑛(�̃�𝑜𝑛,𝑡), 𝑤𝑎

𝑗𝑛 =
1
𝑇

∑
𝑡

(
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝑆𝑃𝑗𝑛∑
𝑗 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝑆𝑃𝑗𝑛

)
𝑡

(12)

𝒢𝑙(�̃�𝑜𝑛,𝑡) =
∑

𝑔 𝑤
𝑏
𝑙𝑛
𝒢𝑙𝑛(�̃�𝑜𝑛,𝑡), 𝑤𝑏

𝑙𝑛
=

1
𝑇

∑
𝑡

(
𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝐺𝑆𝑃𝑙𝑛∑
𝑔 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝑆𝑃𝑙𝑛

)
𝑡

(13)

where 𝑤𝑎
𝑗𝑛

denotes the average share of the nominal GSP the sector 𝑠 on the total
nominal GSP of the state 𝑛, 𝑤𝑏

𝑙𝑛
represents the average share of the nominal GSP of the

industry 𝑙 situated in state 𝑛 on the total GDP of the industry 𝑙.

The effect of the nonlinearities is still evident at the state level, as highlighted by
panels 4a and 4b in Figure 4. These panels provide a visual representation of the spatial
distribution of 𝒢𝑛 , accompanied by their respective 90-percent confidence intervals. To
ease interpretation, blue shades correspond to positive effects on real production, while
red hues denote negative effects. The results reveal that the impact of a small weather
shock, when aggregated at the state level, oscillates within the range from -1.45 percent to
0.53 percent. In this regard, almost one-quarter of the states exhibit statistically negative
effects. In contrast, when states face large temperature anomalies, their responses per
unit Celsius span a broader interval of [-2.7%: 1.42%], with 17 out of 48 states presenting
statistically significant reductions in their economic activity. Particularly, states in the
Southwest, Louisiana (-2.7%), and New Mexico (-1.8%) appear to be more vulnerable to
large weather anomalies.

In comparison, aggregating the impact 𝒢𝑗𝑛 to the industry level (𝒢𝑙) shows which
sectors are, on average, more sensitive to short-run variations in temperature. Figure
5 presents the distribution of 𝐺𝑙 under the small and the large weather anomalies. In
line with the literature, agriculture production looks to be the most affected under both
scenarios, with approximately a decrease of 3 percent per unit Celsius. In the case of
a small shock, close to 11 out of 20 sectors exhibit no significant responses, while five
sectors show negative statistically significant responses. Surprisingly, three sectors report
increments in their economic activity: healthcare (0.27%), management (0.36%), and fi-
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Figure 4. Impact of weather fluctuations on economic activity at state level 𝒢𝑛 , per unit
Celsius

(a) Small weather shock �̃�0 = 0.5𝜎�̃� (b) Large weather shock �̃�0 = 1.5𝜎�̃�

Note: Panels (a) and (b) showed the difference in the average growth rate per state with respect to a scenario with no weather shock
�̃� = 0. Changes are reported per unit Celsius to allow comparison between the two shocks. The average growth rate was computed as
a weighted sum of the sector responses using the share in nominal state GDP as weight. Contractions in the growth rate are shaded
in red, while increments are in blue. The figures at the bottom show the confidence intervals for 90 percent confidence. Lines in blue
with a square marker report statistically positive effects, lines in gray with a shaded triangle marker are related to a no-significant
response, and lines in red with a circle marker suggest a significant negative impact.

nance (0.68%). The results for the management and finance sector could be related to
a higher investment appetite during "good" weather days, as shown by Dushnitsky and
Sarkar (2022). These effects disappear when the economy faces a large shock. In contrast,
negative responses are more accentuated under large weather fluctuations, reflecting the
effect of the nonlinearities. For example, the contraction in utilities passes from -0.8 to
-1.2, while the response of education services changes from -0.5% to -0.8%. Although,
in most cases, a larger shock causes a more negative impact on the mean, the high vari-
ability across regions worsens the identification of the aggregate effect, leading to large
confidence intervals and statistically no-significant responses.

- Regional contribution to 𝒢𝑛

Economic activities across geographies exhibit a remarkable degree of diversity due
to the confluence of infrastructure, geography, resources, and historical influence. For
example, geographies with abundant natural resources will have an economy more ori-
ented toward extractive industries. Conversely, states with large urban centers tend to
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Figure 5. Impact of weather fluctuations economic activity at industry level 𝒢𝑙 , per unit
Celsius

(a) Small weather shock �̃�0 = 0.5𝜎�̃� (b) Large weather shock �̃�0 = 1.5𝜎�̃�

Note: Panels (a) and (b) showed the difference in the average growth rate per industry with respect to a scenario with no weather
shock �̃� = 0. Changes are reported per unit Celsius to allow comparison between the two shocks. The average growth rate was
computed as a weighted sum of the state’s responses within the same industry using the state’s share in nominal GDP of the specific
as weigh. Lines in blue with a square marker report statistically positive effects, lines in gray with a shaded triangle marker are
related to a no-significant response, and lines in red with a circle marker suggest a significant negative impact. Confidence intervals
cover a probability of 90 percent.

emphasize service sectors. Figure 6 illustrates the sectoral composition of the 48 con-
sidered states, revealing the diversity in economic structures. Given these disparities, a
natural question arises: To what degree are the differences in sectoral composition among
states explaining the observed heterogeneity in the response to weather anomalies? The
answer to this question holds relevance for two main reasons. First, isolating the role of
economic structures and geographical particularities in the reported results helps policy-
makers decide the more efficient set of instruments to be used in a world with limited
implementability. Second, recognizing the relevance of regional factors may require state
authorities to build different approaches to assess the risk involved.

Let �̄�𝑎
𝑗
= 1

𝑇

∑
𝑡

(
𝑛𝐺𝐷𝑃𝑗𝑡

𝑛𝐺𝐷𝑃𝑡

)
𝑡

denote the share of the sector 𝑗 in the aggregate economy
and 𝒢𝑗 represent the average impact of weather fluctuations on the sector 𝑗. Then, by
exploiting the linearity of the aggregation 𝒢𝑛 , I can propose the following decomposition:

𝒢𝑛 =
∑
𝑗

�̄�𝑎
𝑗 𝒢𝑗︸    ︷︷    ︸

economy-wide
effect

+

dev. due to
economic struct.︷     ︸︸     ︷∑

𝑗

�̃�𝑎
𝑗𝑛𝒢𝑗 +

∑
𝑗

𝑤𝑎
𝑗𝑛�̃�𝑗𝑛︸       ︷︷       ︸

Δ due to
region-specific

conditions

, �̄�𝑎
𝑗 =

1
𝑇

∑
𝑡

(
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃𝑗𝑡

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃𝑡

)
𝑡

(14)
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Figure 6. Economic structure by state

Note: Figure in the left shows a heatmap of the economic structure by state. In this paper, I understand economic structure as how
the total economic activity of a state is distributed among sectors. In simple terms, the set of share of the nominal GDP of a sector 𝑗 on
the total nominal GDP of the state 𝑛. The figure on the right displays the histogram of these shares.

where variables with tilde �̃�𝑎
𝑗
= 𝑤𝑎

𝑗𝑛
− �̄�𝑎

𝑗
and �̃�𝑗𝑛 = 𝒢𝑗𝑛 −𝒢𝑗 are defined as the differences

of the state-specific value of the variable with respect to its average. The first component
of equation 14 represents the economy-wide effect, which I assume is unrelated to specific
geographical factors. The second component,

∑
𝑗 �̃�

𝑎
𝑗𝑛
𝒢𝑗 , shows the fraction driven solely

by differences in sectoral composition, which I will use as a proxy of the relevance of
the economic structure. Finally, the last component

∑
𝑗 𝑤

𝑎
𝑗𝑛
�̃�𝑗𝑛 captures the effect of

geographically-specific conditions.

Figure 7 plots the contribution of each of these components under the small (panel
7a) and the large weather anomaly (panel 7b). To prevent the cancellation of positive and
negative values, the three components were expressed in absolute terms. Then, the plot is
designed to sum up 100 percent, representing each component’s relative importance. The
economy-wide component is depicted in gray shading, the component associated with the
differences driven by economic structure is plotted in white, and the fraction explained
by region-specific conditions is displayed in black.

Results show that the deviations with respect to the economy-wide component are
mostly explained by regional-specific conditions reflecting the importance of the geo-
graphical dimension and how economic activity is shaped by the environment. In the
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Figure 7. Decomposition of 𝒢𝑛

(a) Small weather shock

(b) Large weather shock

Note: Panel (a) and (b) show the relative importance of the economic structure, state-specific conditions, and an economy-wide
component to explain the average response of each state.

case of a small weather shock, the differences in economic structure are responsible for
around 16 percent of the heterogeneity, while the regional-specific conditions account for
nearly 60 percent. When regions face a large weather anomaly, the contribution of these
components reduces to 11 percent and 42 percent, respectively. The lower explanation
power of both components is not surprising since larger temperature anomalies drive
large reductions in most states, increasing the economy-wide component.
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- Contribution of weather variability to economic performance

This article proposes a nonlinear model to study the short-run implications of
weather fluctuations on growth rates. However, a particularity of the proposed model is
that even if the average of the temperature anomalies is equal to 0, long-run effects are
still possible due to the nonlinear nature of 10. In fact, the expected impact of weather
variability on economic growth rates, which I denote as ℋ𝑗𝑛 , is different from zero and
depends on the variance of the weather anomalies (𝜎2

�̃�𝑛
). I construct ℋ𝑗𝑛 as the difference

between a counterfactual scenario characterized by temperature values that do not deviate
from their short-run trend8 and the observed growth rates. Mathematically, ℋ𝑗𝑛 and their
aggregate at the state level (ℋ𝑛) and at the industry level (ℋ𝑛) can be calculated with the
formulas:9

ℋ𝑗𝑛 = E[Δ𝑦 𝑗𝑛𝑡] − E[Δ𝑦 𝑗𝑛𝑡 |{�̃�𝑛𝑡 = 0} ∞
−∞] =

�̂𝑛,2 + �̂𝑗,2

1− �̂� 𝑗
𝜎2
�̃�𝑛

(15)

ℋ𝑛(𝜎2
�̃�) =

∑
𝑠

𝑤𝑎
𝑗𝑛ℋ𝑗𝑛(𝜎2

�̃�) (16)

ℋ𝑙(𝜎2
�̃�) =

∑
𝑔

𝑤𝑏
𝑙𝑛
ℋ𝑙𝑛(𝜎2

�̃�) (17)

The distribution of ℋ𝑛 and its confidence interval for a probability range of 90
percent plotted in figure 8 support the short-run nature of my exercise. In average terms,
we can see that most states would benefit from a scenario without short-run deviations
in temperature. In particular, the states of Louisiana (-0.55%), Montana (-0.52%), Illinois
(-0.47%), and New Mexico (-0.45%) would be the more benefited under the counterfactual
scenario. However, in 47 cases, the confidence interval shows that this expected effect is not
statistically significant, suggesting that my approach successfully isolates only fluctuations
in the short run.

8In simple terms, this counterfactual scenario assumes that �̃�𝑛𝑡 remains constant at 0 for the whole sample
9Using a Taylor approximation, we have that 𝑉𝐴𝑅

(
𝑋
𝑌

)
= 1

(�̄�)2 𝑣𝑎𝑟(𝑋) + (�̄�)2
(�̄�)4 𝑣𝑎𝑟(𝑌) +

�̄�
(�̄�)3 𝑐𝑜𝑣(𝑋,𝑌). Ap-

plying it to ℋ𝑗𝑛 and assuming 𝜎2
�̃� being constant, I have:

𝑣𝑎𝑟(ℋ𝑗𝑛) = 𝜎2
�̃�

[
1

(1− �̂�𝑗)2

(
𝜎2
�̂𝑛,2

+ 𝜎2
�̂𝑗,2

+ 2𝑐𝑜𝑣(�̂�2𝑛 , �̂�2𝑗)
)
+

(�̂𝑛,2 + �̂𝑗,2)2

(1− �̂�𝑗)4
𝜎2
�̂�𝑗

+ 2
�̂𝑛,2 + �̂𝑗,2

(1− �̂�𝑗)3
(
𝑐𝑜𝑣(�̂𝑗,2, �̂�𝑗) + 𝑐𝑜𝑣(�̂𝑗,2, �̂�𝑗)

)]
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Figure 8. Contribution of weather variability to growth rates at state level ℋ𝑛

Note: Expected contribution of weather variability to economic growth by state. The map on the right shows the spatial distribution
of the expected values. Negative contributions are shaded in red, while positive contributions are in blue. Confidence intervals are
shown on the left and cover a probability of 90 percent.

4 The model with production networks

In this section, I show how accounting for the interconnectivity of economic activities
across the different states changes the estimated impacts of weather anomalies on growth
rates across regions and sectors of the economy. An easy way to introduce such linkages
in the previous model is by allowing intermediate good producers to use regional-specific
final goods as intermediate inputs or materials in their production process while main-
taining everything else equal. As before, I denote a particular geography and its final
good by 𝑛 ∈ {1, . . . , 𝑁} or 𝑚 and a particular intermediate sector as 𝑗 ∈ {1, . . . , 𝐽} or 𝑖. I
use sector (𝑗, 𝑛) or sector (𝑖,𝑚) to denote a specific combination of sector and region. The
new production function for intermediate goods is:

𝑞
𝑗
𝑛 = 𝑧

𝑗
𝑛(�̃�𝑛)

(
𝑙
𝑗
𝑛

) �̃� 𝑗
𝑛
∏
𝑚

(
𝑥
𝑗
𝑛𝑚

) 𝑎 𝑗𝑛𝑚
with

∑
𝑚

𝑎
𝑗
𝑛𝑚 + �̃�

𝑗
𝑛 = 1 ∀𝑛 (18)

Here, 𝑞 𝑗𝑛 represents the production of sector 𝑗 at state 𝑛, 𝑙 𝑗𝑛 is labor, where 𝑥
𝑗
𝑛,𝑚 denotes

the final goods 𝑚 that sector (𝑗, 𝑛) buys to use them as intermediate goods, and {𝑎 𝑗𝑛𝑚} are
the output elasticities of these intermediate goods. In a similar fashion, the production
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function of State 𝑛 is now:

𝑄𝑛 =
∏
𝑗

(
𝑞
𝑗
𝑛

)𝑏 𝑗𝑛
(19)

In contrast with the previous section where 𝑦
𝑗
𝑛 and 𝑌𝑛 represent value-added production

functions, in both cases here, 𝑞 𝑗𝑛 and 𝑄𝑛 refer to gross output. Then, I need to add the
following market-clearing conditions:

𝑄𝑛 = 𝑐𝑛 +
∑
𝑚

∑
𝑗

𝑥
𝑗
𝑚𝑛 ∀𝑛 (20)

The optimality conditions for the intermediate goods and final firms are:

𝑎
𝑗
𝑛𝑚 =

𝑝𝑚𝑥
𝑗
𝑛𝑚

𝑝
𝑗
𝑛𝑞

𝑗
𝑛

(21) �̃�
𝑗
𝑛 =

𝑤𝑙
𝑗
𝑛

𝑝
𝑗
𝑛𝑞

𝑗
𝑛

(22) 𝑏
𝑗
𝑛 =

𝑝
𝑗
𝑛𝑞

𝑗
𝑛

𝑝𝑛𝑄𝑛
(23)

At equilibrium, the ratio of expenditures on inputs 𝑥
𝑗
𝑛𝑚 to total sales of the sector (𝑗, 𝑛)

is fixed and can be used to infer the elasticities 𝑎
𝑗
𝑛𝑚 . Similarly, the ratio of expenditure

on intermediate goods (j,n) to total sales of the region 𝑛 is constant and is determined by
the parameter 𝑏

𝑗
𝑛 . Defining the real value added of the sector (j,n) as the total payroll in

real terms 𝑦
𝑗
𝑛 =

𝑤𝑙
𝑗
𝑛

𝑝
𝑗
𝑛

, we can see from Equation 22 that the ratio 𝑦
𝑗
𝑛 to 𝑞

𝑗
𝑛 is constant and

determined by the labor elasticity �̃�
𝑗
𝑛 . Therefore, we can express fluctuations in the real

value-added by sector-state as:
𝑑 ln 𝑦

𝑗
𝑛 = 𝑑 ln 𝑞

𝑗
𝑛 (24)

Combining the optimality condition of the household 𝑝𝑛
𝑝𝑚

=
𝛽𝑛
𝛽𝑚

𝑐𝑚
𝑐𝑛

, the first order
condition of final-good producers and equation 21, we obtain the relation

𝑥
𝑗
𝑛𝑚 = 𝑎

𝑗
𝑛𝑚𝑏

𝑗
𝑛

𝛽𝑛
𝛽𝑚

𝑐𝑚

𝑐𝑛
𝑞𝑛

that can be introduced in the market clearing condition to reach the following result:

𝑞𝑛

𝑐𝑛
= 1+

∑
𝑚

©«
𝛽𝑚
𝛽𝑛

∑
𝑗

𝑎
𝑗
𝑚𝑛𝑏

𝑗
𝑚
ª®¬
𝑞𝑚

𝑐𝑚
(25)

Equation 25 shows that, in the equilibrium, the share of the production of the final good
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𝑛 that is directly consumed by the household is constant and independent of productivity
shocks. It implies that at the state level, fluctuations in final consumption are equal to
fluctuations in gross output.

𝑑 ln𝑄𝑛 = 𝑑 ln 𝑐𝑛 (26)

Taking logs and differentiating both sides of the production function of intermediate
sectors and realizing that at equilibrium 𝑙𝑖 is constant leads to:

𝑑 ln 𝑦
𝑗
𝑛 = 𝑑 ln 𝑧

𝑗
𝑛(�̃�𝑛) +

∑
𝑚,𝑖

𝑎
𝑗
𝑛𝑚𝑏

𝑖
𝑚𝑑 ln 𝑦 𝑖𝑚

ln y = (𝐼 −𝐴)−1𝑑 ln z = Ψ𝑑 ln z (27)

where ln y =
[
𝑑 ln 𝑦1

1 , 𝑑 ln 𝑦2
1 , ...

]𝑇 is a column vector composed of the sector-state real value
added growth rates. The matrix 𝐴 collects all the coefficient 𝑏 𝑖𝑚𝑎

𝑗
𝑛𝑚 associated with the

input-output matrix of the economy. The matrix Ψ is called the Leontief-inverse matrix.
Particularly, since we can decomposeΨ as an infinite sum of the power of the input-output
matrix Ψ =

∑∞
𝑠=0 𝐴

𝑠 , each element of Ψ gives us an idea of the total impact of a particular
fluctuation 𝑧 𝑖𝑚 has in all the other sectors 𝑦

𝑗
𝑛 of the economy. Finally, this expression can

be written as:

d ln 𝑦
𝑗
𝑛 = d ln 𝑧

𝑗
𝑛(�̃�𝑛)︸      ︷︷      ︸

own effect

+

network effect︷                              ︸︸                              ︷∑
𝑖,𝑚

(𝜓 𝑗𝑖
𝑛𝑚 − 1 𝑗=𝑖

𝑛=𝑚)d ln 𝑧 𝑖𝑚(�̃�𝑚) (28)

The propagation of a weather shock through the economy can be understood using
a simple example. Suppose an economy comprises three states and two sectors, one
producing a nontradable good 𝑠2. Moreover, suppose that State 1 produces only the good
𝑠1 and trades it only with State 3. This setup is depicted in the left panel of Figure 9. To
ease the explanation, let 𝑠𝑛

𝑗
denote the production of the good 𝑗 in the state 𝑛. As shown

by the panel (b) of the same figure, if State 1 faces a weather shock �̃�1, this shock initially
reduces the productivity of the firms in State 1 and contracts the production of 𝑠1

1. Since
State 3 buys 𝑠1 from State 1 as intermediate input to produce good 1, its production is
directly affected in the first round. Given that 𝑠3

1 is used as an intermediate input for 𝑠2
1

and the nontradable good 𝑠3
2, the production of both reduces in a second round. This

pattern continues, creating a cascade of negative shocks. This simple example allows us
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to visualize the importance of accounting for these network effects to capture the actual
impact of weather shocks on the whole economy.

Figure 9. Transmission of a state-specific weather shock
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(a) Trading connections in the economy
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𝑧
1
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(b) Propagation of a weather shock in State 1

As in the previous section, the optimality conditions imply the following aggregation
rule:

𝑑 ln 𝑐𝑛 =
∑
𝑗

𝑏
𝑗
𝑛𝑑 ln 𝑦

𝑗
𝑛 (29)

𝑑 ln𝐶 =
∑
𝑛,𝑗

𝛽𝑛𝑏
𝑗
𝑛𝑑 ln 𝑦

𝑗
𝑛 (30)

Therefore, I can use 𝑏
𝑗
𝑛 as an aggregator at the state level and 𝛽𝑛 as an aggregator from

state to aggregate.

4.1 Empirical implementation

Equation 28 reveals the relevance of the Leontief-inverse matrix Ψ derived from an
Input-Output (𝐴) table constructed at a sector-state level to test whether interregional link-
ages contribute significantly to the propagation of weather fluctuations into the economy.
Unfortunately, available data is not sufficient to compute this Leontief-inverse directly;
consequently, an approximation is required. I denote this empirical approximation of 𝐴
as 𝒜. To construct 𝒜, I rely on data from the USE table and the Commodity Flow Survey
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(CFS) and employ some critical assumptions. In the following paragraphs, I describe each
source of information and my approximation strategy.

The "USE table" is a component of the input-output accounts provided by the Bureau
of Economic Analysis (BEA) on a five-year basis. This table reports the aggregate transac-
tions between the different sectors of the economy. Specifically, each entry (𝑖, 𝑗) in the USE
table shows the total spending of sector 𝑠 𝑗 on goods produced by sector 𝑠𝑖 . Additionally,
the USE table included information about the Gross Output of each sector. Therefore,
the USE table provides detailed information about the intermediate inputs used and the
Value Added (VA) generated by each sector. Leveraging these details, I can construct the
Input-Output (IO) matrix at the sector level for the whole economy where each element
𝐼𝑂 𝑖 𝑗 =

USE𝑗𝑖∑
𝑙∈𝑆 USE𝑙 𝑗+𝑉𝐴𝑗

represents the average requirement that a typical firm in the sector 𝑠𝑖
has for intermediate inputs produced by sector 𝑠 𝑗 measured as a ratio to its total sales.

I "regionalize" the parameters {𝑎𝑖 𝑗} using information from the Commodity Flow
Survey. The CFS is a survey conducted every five years by the U.S. Census Bureau in
collaboration with the Department of Transportation Bureau of Transportation Statistics10.
It gathers comprehensive data on shipments within the states of the United States. The
collected data includes details such as the state of origin and destination, the NAIC
classification of the product being shipped, the value of the shipment, and the export
status. After subtracting shipments that would be exported, I obtained 24 matrices 𝐵(𝑗)
with the information on interregional trade for 24 tradable sectors. Each entry (𝑖, 𝑗) of 𝐵(𝑗)
represents the total value of the 𝑗-goods shipped from state 𝑗 to state 𝑖. I classified the
remaining 35 sectors as not tradable (see the appendix).

It is important to note that CFS does not specify the final user of these shipments,
preventing distinguishing whether these shipments are used as intermediate inputs or for
final consumption. Moreover, within the fraction of the shipments that are being used as
an intermediate input, it is impossible to identify the specific proportions that each sector
is purchasing. To handle these challenges, I assume that for a given good 𝑗, the sector
sales structure 𝑠 𝑗 is homogeneous across the geographies, and they follow what the 𝐼𝑂

reports. This assumption has two main implications. Firstly, since the fraction of total
sales that are sold towards final consumption is the same across states, it is not required
to discount sales to final consumers from matrices 𝐵 if they are expressed as shares rather
than in dollar value. Let �̃�(𝑗) denote a transformation of 𝐵(𝑗) such that each (𝑙,𝑚)-element

10The most recent available CFS data was released in 2021, containing data from 2017

26



𝑏
𝑙,𝑚
,𝑗 =

𝑏
𝑙,𝑚
,𝑗∑
ℎ 𝑏

𝑙,ℎ
,𝑗

is the fraction of the expenditures of the state 𝑙 on [final or intermediate]

goods 𝑗 that comes from the state 𝑚. Secondly, since the distribution of sales a good 𝑗 as
intermediate inputs is independent of the geography, the ratios 𝑏

𝑙,𝑚
,𝑗 are fixed across the

sectors within the state 𝑙 for a particular intermediate input 𝑗. Nontradable goods, can be
easily accommodated by noting that �̃�(𝑗)𝑗∈ nontradable is an identity matrix, implying that
𝑏
𝑙,𝑚
,𝑗∈ nontradable = 1𝑙=𝑚 and zero otherwise. This implicitly assumes that nontradable sectors

buy exclusively from sectors within the same state, reducing the exposure of such sectors
to weather shocks from another region. Then, I can approximate the requirement of the
pair sector-state (𝑖, 𝑙) for intermediate goods from the pair (𝑗,𝑚) as: 𝒜 𝑙,𝑚

𝑖,𝑗 = 𝑏
𝑙,𝑚
,𝑗 𝑎𝑖,𝑗

Let �̃�𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑗𝑛𝑡

denote the weather shock faced by a sector 𝑗 located within the state 𝑛

at time 𝑡, which arises solely due to network-related connection computed as the average
of other regional weather anomalies �̃�𝑛 weighted by the components of the previously
calibrated Leontief-inverse. Then, the empirical counterpart of equation 28 to be estimated
is:

Δ�̃� 𝑗,𝑛,𝑡 = 𝛼 + 𝜌 𝑗Δ�̃� 𝑗,𝑛,𝑡−1 +
(
�𝑛,1 + �𝑗,1

)
�̃�𝑛,𝑡 +

(
�𝑛,2 + �𝑗,2

)
�̃�2
𝑛,𝑡+

�1𝑛 �̃�
𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑗𝑛𝑡 + �2𝑛

(
�̃�𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑗𝑛𝑡

)2
+ 𝛾𝑗 + 𝛾𝑛 + 𝛾𝑡 + 𝜖 𝑗,𝑛,𝑡 (31)

Although regression 10 exploits possible heterogeneities across sectors and states, it
is important to acknowledge that including additional explanatory variables introduces
limitations regarding the dimensions in which heterogeneity can be explored arising from
the reduction of power in the estimation due to data limitations. In that sense, I only con-
sider potential differences in the sensitivity to �̃�𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑗𝑛𝑡
across geographies. Two reasons

support this decision. First, as inferred from the outcomes of the preceding regression,
the regional differences in the impact of weather fluctuations are mostly explained by ge-
ographical conditions rather than sectoral composition, implying that not including this
dimension would result in larger biases in the analysis. The second reason is technical.
Allowing heterogeneity across sectors reduces the estimation precision due to the addi-
tional 22 coefficients that must be estimated and the set of variances and covariances that
characterize their distribution.
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- Contemporaneous impact of weather fluctuations on economic activity

Similar to regression 10, we can calculate the total effect of a specific weather shock
�̃�0 state-by-state. However, including networks adds complexity to constructing a coun-
terfactual scenario. For example, in the model where only heterogeneity was considered,
the results at the state level are valid whether each state faces the weather shocks simulta-
neously or at different times. In contrast, in an economy with network linkages, weather
shocks propagate internally among sectors within the same state and externally across
states. These propagation patterns imply that state-level results depend on the set of
simultaneous shocks that the whole economy faces. To maintain coherence with the spirit
of the counterfactual scenario posted in the previous sections and to avoid aggregation
problems, I simulated a scenario where the temperature in all states increases simultane-
ously by the same amount �̃�𝑜 which I call a generalized weather shock scenario. Under
this scenario, the total effect per unit Celsius is

𝒢𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑗𝑛 (�̃�𝑜) = (�̂𝑛,1 + �̂𝑗,1) + (�̂𝑛,2 + �̂𝑗,2)�̃�𝑜︸                              ︷︷                              ︸

direct effect/exposure

+

network effect/exposure︷               ︸︸               ︷
�̂1𝑛ℓ 𝑗𝑛 + �̂2𝑛ℓ

2
𝑗𝑛 �̃�

𝑜 ℓ 𝑗𝑛 =
∑
𝑖,𝑚

(
𝜓 𝑗𝑛,𝑖𝑚 − 1 𝑗𝑛=𝑖𝑚

)
(32)

This model uses the ratio of gross output as weight (Equation 29) to aggregate from
sector-state to state level. Unfortunately, there is no data on gross output at the neither
sector-state nor the state level. Then, I assume that the weights previously used, which
are based on nominal GDP, are good proxies. Therefore, all the aggregations from 𝒢𝑙𝑛

were based on the same aggregators as in the first model.

At a geographical level11, a large weather shock causes a statistically significant
reduction in real output in most states consistent with the role of the amplifier of the
network. These results are plotted in Figure 10, which presents the effect -per unit Celsius-
of small and large weather fluctuations on economic activity at the state level. Similarly to
the model with only heterogeneity, small weather fluctuations cause significant negative
impacts only in one-quarter of the states (panel 10a). In contrast, large shocks cause
statistically significant reductions in the real production of 32 states, which is almost
double the number of states affected negatively when only heterogeneities are accounted
for. The transmission of negative effects through network linkages looks particularly

11The results can be aggregated using the same weights as in the previous section.
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strong for the states in the West and Middle-West regions of the United States, such as
California, Oregon, and Michigan.

Figure 10. Impact of weather fluctuations at state level 𝒢𝑛 , per unit Celsius

(a) Small weather shock �̃�0 = 0.5𝜎�̃� (b) Large weather shock �̃�0 = 1.5𝜎�̃�

Note: Panels (a) and (b) showed the difference in the average growth rate per state with respect to a scenario with no weather shock
�̃� = 0. Changes are reported per unit Celsius to allow comparison between the two shocks. The average growth rate was computed as
a weighted sum of the sector responses using the share in nominal state GDP as weigh. Contractions in the growth rate are shaded in
red, while increments are in blue. The figures at the bottom show the confidence intervals for 90 percent confidence. Lines in blue
with a square marker report statistically positive effects, lines in gray with a shaded triangle marker are related to a no-significant
response, and lines in red with a circle marker suggest a significant negative impact.

As depicted by Figure 11, accounting for sectoral interactions amplifies the negative
effect of weather shocks on both tradable and nontradable sectors. This figure provides
valuable insights. First, from panel (a), we see that the positive effect of small weather
shocks on the economic activity of sectors like Finance disappears when we account for
economic linkages. Second, when the economy faces a large weather shock, production
reduces in 14 out of 20 sectors, as displayed by panel 11b, which almost doubles the results
of the model with only heterogeneity. In particular, both types of manufacturing (durable
and nondurable) report a statistically significant contraction of around -2.5 percent and -1.8
percent, respectively. Third, although the transmission mechanism relies on interregional
trade flows, its effects are also visualized in non-tradable sectors. This is particularly
the case for Construction and Accommodations that pass from not showing significant
responses to reporting statistically significant negative responses.
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Figure 11. Impact of weather fluctuations at industry level 𝒢𝑙 , per unit Celsius

(a) Small weather shock �̃�0 = 0.5𝜎�̃� (b) Large weather shock �̃�0 = 1.5𝜎�̃�

Note: Panels (a) and (b) showed the difference in the average growth rate per industry with respect to a scenario with no weather
shock �̃� = 0. Changes are reported per unit Celsius to allow comparison between the two shocks. The average growth rate was
computed as a weighted sum of the state’s responses within the same industry using the state’s share in nominal GDP of the specific
as weigh. Lines in blue with a square marker report statistically positive effects, lines in gray with a shaded triangle marker are
related to a no-significant response, and lines in red with a circle marker suggest a significant negative impact. Confidence intervals
cover a probability of 90 percent.

- Decomposing the geographical differences in 𝒢𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑗𝑛

In a model with interregional linkages, there are two relevant dimensions in which
the heterogeneity in 𝒢𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑗𝑛
can be decomposed. The first dimension explains the eco-

nomic source of these differences by isolating the fraction of the impact explained by
differences in the economic structure and the portion related to sector-state-specific con-
ditions. I provided a way to measure both components in the previous section. The
second dimension identifies the geographical sources of these differences by quantifying
the extent to which 𝒢𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑛 is driven by weather shocks within the state 𝑔 itself and how
much is explained by the weather conditions of other states that in equation 28, we called
as direct and network effect, respectively. Both decompositions are shown in Figure 12.

Although the introduction of network linkages increases the relevance of the economy-
wide component, differences in the sensitivity to weather shocks across states are mainly
explained by state-specific conditions. Panels (a) and (b) of Figure 12 show the decom-
position of 𝒢𝑛 by economic source. On average, the portion explained by state-specific
conditions, depicted as black shaded bars, explains 46 percent of the total effect when the
economy is hit by a small weather shock. This value reduces to 26% in the scenario of a
large weather shock. In contrast, differences in economic structure contribute to 12 and
8 percent, respectively. Notably, the economic structure component is more relevant for
North Dakota, Iowa, and Nebraska, contributing more than 33 percent to the total effect
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under small weather shocks. Both the direct and network effects explain a good portion
of the total impact of weather fluctuations on the economy, as depicted by panels (c) and
(d) of Figure 12. On average, the contribution of the network effect is around 53 percent
(56 % during small shocks and 47% during large shocks).

Figure 12. Decomposition of 𝒢𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑛

(a) Small weather shock (b) Large weather shock

(c) Small weather shock (d) Large weather shock

Note: Panel (a) and (b) show the relative importance of the economic structure, state-specific conditions, and an economy-wide
component to explain the average response of each state. Panel (c) and (d) present the decomposition of 𝒢𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑛 in their
geographical sources: (i) direct effect: the total effect caused by temperature anomalies in their region and (ii) indirect effect: the
impact of temperature anomalies from other regions

5 Macroeconomic implications of heterogeneity and network linkages

In the previous sections, I showed that there is high variability in the local impact
of weather fluctuations on economic growth across sectors and states. I also show that
including networks amplifies the economic contraction caused by a widespread temper-
ature increase at the sector-state level due to the exposure to weather fluctuations from
other regions. In this section, I explore the macroeconomic implications of both channels.

In his "granular" hypothesis, Gabaix (2011) suggests that idiosyncratic shocks to
large firms have nontrivial aggregate effects in concentrated economies. In the United
States, almost one-third of the economic activity is concentrated in California (13%), New
York (9%), Texas (8%), and Illinois (5%). A first approximation of the macroeconomic

31



relevance of production networks is to test whether weather fluctuations originating in
the largest states generate the most significant aggregate impact. I approach it with a
counterfactual analysis. In this scenario, I compute the aggregate effect of idiosyncratic
weather fluctuations in a particular state. For each state 𝑛, I create a vector of pseudo-
weather fluctuations 𝑡𝑠𝑖𝑚𝑛 in which the entry associated with the state 𝑛 has a value 𝜏0 while
the rest are set to 0. Then, I calculate a new vector of network effects 𝜏𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑗𝑛
conditional

on 𝜏𝑠𝑖𝑚 and predict the effect on state-level real production as in the previous section.
As shown by equation 30, the overall impact of weather shocks on aggregate economic
activity can be computed as a weighted average of the state-level effects using the share of
the nominal GDP of State 𝑛 to aggregate nominal GDP as weight:

𝒢𝑛𝑒𝑡𝑤𝑜𝑟𝑘(�̃�𝑜)�̃�𝑜 =
∑
𝑛

𝑤𝑐
𝑛𝒢𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑛 (�̃�𝑜)�̃�𝑜 , 𝑤𝑐
𝑛 =

1
𝑇

∑
𝑡

(
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃𝑛

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃

)
𝑡

(33)

Based on the results of this exercise, it appears that while the largest states have
some relevance, fluctuations in smaller states have a more significant impact on the overall
effect of weather changes. Figure 13 provides a visual representation of this counterfactual
analysis. In panel (a), each state experienced a shock of 1 degree Celsius. In panel (b),
each state faced a shock equivalent to 1.5 standard deviations of their regional weather
fluctuations. The results show that weather fluctuations in Louisiana, New Jersey, Georgia,
and Michigan have the greatest impact on the overall GDP.

Figure 13. Aggregate impact of local weather fluctuations

(a) shock size: 1°C (b) shock size: 1.5𝜎�̃�,𝑛

Note: The aggregate effects of local fluctuations were computed based on a counterfactual scenario in which weather fluctuations
of a particular state received a shock while keeping constant the rest. Panel (a) shows the distribution of aggregate effects when
each state faces a weather fluctuation of 1 Celsius degree. Panel (b) shows the distribution of aggregate effect when each state
receives a shock equal to 1 standard deviation.
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Next, I aggregate the results from the models in sections 3 and 4 as in equation 33.
To provide a basis for comparison, I also include a reference point. This reference point
is obtained by re-estimating specification 10, assuming constant slopes across sectors and
states, thus muting the effects of heterogeneity and networks. The specific regression is:

Δ�̃� 𝑗,𝑛,𝑡 = 𝛼 + 𝜌Δ�̃� 𝑗,𝑛,𝑡−1 + 𝜑1�̃�𝑛,𝑡 + 𝜑2�̃�
2
𝑛,𝑡 + �𝑗 + �𝑡 + �𝑛 + 𝜖 𝑗,𝑛,𝑡 (34)

from where 𝒢𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(�̃�𝑜) = �̂�1 + �̂�2�̃�𝑛,𝑡

Figure 14 displays the estimated average impacts of weather shocks for each model
at different levels of �̃� in the range from 0 to 1.5. In this figure, the red line represents the
total effect on economic growth estimated by the model with no heterogeneity or networks
(Equation 34). The black line refers to the model with only heterogeneity (section 3), and
the blue line shows the aggregate impact of the model with networks (section 4).

Figure 14. Impact of an weather fluctuations �̃� on economic growth

Note: Total contemporaneous impact of a generalized unanticipated shock in temperature on growth rates under different
models. A generalized increase in temperature is defined as an increase in temperature in all the states simultaneously. The red
line displays the impact estimated by a model without heterogeneity and networks. The black line shows the impact estimated
by the model in section 3 and aggregated using share in nominal GDP as weighs. The blue line plots the aggregate impact of the
model with heterogeneous response and production networks presented in section 4. the shaded areas in blue and red plot a
one-standard deviation confidence interval. 𝜎�̃� ≈ 0.67 represents a standard deviation of the measure of weather fluctuations �̃�

The results demonstrate that neglecting these channels underestimates the effect of
widespread weather shock on economic activity. For instance, when neither heterogeneity
nor networks are included, an increase in temperature of 0.3 Celsius degrees reduces the
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aggregate economic activity by around -0.03 percent. However, an increase in temperature
of 1 Celsius degree causes a contemporaneous reduction of -0.13 percent. These impacts
are higher once sector-state specific sensitivities to weather fluctuations are added. In
that case, an increase in temperatures of 0.3 degrees Celsius reduces production by -
0.09 percent, while a shock of 1 degree Celsius would reduce economic activity by -0.37
percent. In turn, controlling for network linkages across states amplifies the negative
macroeconomic effects of weather fluctuations. This model estimates an aggregate impact
of around -0.10 percent for the small shock and a contraction of about 1.14 percent for the
large shock.

As weather fluctuations increase, the network effect becomes more relevant, explain-
ing over 70% of the aggregate impact for fluctuations larger than 0.32 degrees Celsius.
As mentioned earlier, including production networks indirectly exposes states to weather
fluctuations from other regions. To assess the relevance of this channel at an aggregate
level, I separated the overall impact of weather fluctuations into the direct and network
effects. Figure displays these shares for weather fluctuations exceeding 0.15 degrees Cel-
sius. At this point, both components start exhibiting negative effects. The direct exposure
explains close to 80 percent of the aggregate effect for smaller shocks, but this percentage
reduces drastically as weather fluctuations increase. For example, it reaches around 30
percent for fluctuations close to 0.32 Celsius degree, and around 11 percent for fluctua-
tions close to 1 Celsius. Differences compared to the state-level analysis in Figure 12 are
because direct effects can be either positive or negative, and many cancel out during the
aggregation process.

To test the robustness of these conclusions, I calculated the estimates of the theoretical
models in sections 3 and 4 using a total of eight different versions of their empirical
counterparts. The first set of alternative models changes the choice of the temperature
indicator 𝜏 from average temperatures to maximum and minimum temperatures. A
second set of models varies the length of the rolling windows from which I compute
the reference base �̄�𝑔,𝑚,𝑡 , changing it to 5, 20, and 30 years in each case. The final set of
alternative models uses a different measure of economic activity. One of the concerns
results from my choice of using state-specific consumer prices as deflators to construct
the real GDP by state instead of using sector-specific price indices. Using the sector-state
price index is the closest approximation to the theoretical model. However, this level of
disaggregation is not available for the same horizon as my empirical exercise. I present
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Figure 15. Share of direct effect to aggregate impact of weather fluctuations

two approaches that partially allow me to handle this issue. The first approach is using
the aggregate deflator of the value-added by industry provided by the BEA and applying
the same weights and process to chain them due to the change in the classification system
described in section 3. The second approach is to change the specification of my baseline
models to include a sector-time fixed effect to control for any common sector-specific shock
that could be an aggregate change in prices.

The results from the sensitivity analysis show my conclusions are robust to different
choices of temperature indicators and measurements of economic activity. Figure 16 plots
this comparison. The left panel of this figure compares the model from section 3 plotted
as solid black lines with the aforementioned specifications. The right panel compares
the results from these alternative models with the baseline model with heterogeneity and
networks presented in section 4. To ease the comparison, reference points were plotted
in red with a one-standard deviation confidence interval. The reference point chosen for
the models in panel (a) was the regression without heterogeneities or networks, while the
baseline model from section 4 was selected as a reference for plots in panel (b). Results
from the alternative models were plotted as dotted blue lines, dashed green lines, and
dashed purple lines. In every case, we can see that the results from the alternative
models do not separate drastically from the baseline estimations and do not change my
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Figure 16. Macroeconomic effect of �̃� under alternatives models

(a) Models with Heterogeneity (b) Models with Heterogeneity
and Networks

Note: Plots in the left panel show the comparison respect to the model from section 3 while the right panel presents the
comparison respect to the model with heterogeneities and networks. The results from the baseline estimation are plotted as
solid black lines. Plots at the top show the results from the models with a different temperature indicator, plots in the middle
present the impact estimated by changing the window length, and the plots at the bottom display the results from the models
to handle concerns regarding sectoral prices. In every picture, a reference for comparison is plotted in red in addition to a
one-standard-deviation confidence interval. The model without heterogeneity was chosen as a reference for the model with
heterogeneity. Finally, the results from the model with heterogeneity were chosen as a reference for the pictures in the right
panel.

conclusions. Additional plots are added in appendix C

6 Including non-economic connections

One potential concern that may arise about the counterfactual scenarios proposed in
sections 3 and 4 is the likelihood of a widespread temperature increase across the United
States. To address it, I present an additional counterfactual exercise based on a common
factor analysis. In this new scenario, I find the underlying components that explain the
largest fraction of the variance of the temperature anomalies. Once these components are
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identified, I proceed to perturbate each common factor by a shock equal to one standard
deviation. As a result, I have a new set of simulated temperature anomalies {�̃�𝑠𝑖𝑚𝑛 } that I
can use to follow the counterfactual strategy in section 4. This approach emerges naturally
since the NOAA recognizes nine climate regions across the country, meaning that some
temperature anomalies could have a common source. Moreover, the presence of common
factors does not alter my previous estimates since they only affect the economy through
temperature changes.

To simplify the analysis, I assume that the common factors affect temperature anoma-
lies linearly as follows:

�̃�𝑛𝑡 = Λ𝜏𝑘𝑡 + 𝜖�̃�,𝑛𝑡 (35)

where 𝜏𝑘𝑡 is a vector of 𝑘 unobservable common factors, and Λ is a loading matrix. To
estimate Λ, I use principal component analysis, which involves calculating the eigenvalue-
eigenvector decomposition and choosing the eigenvectors associated with the 𝑘 largest
eigenvalues as loadings.

Figure 17. Factor analysis of weather fluctuations

Note: The figure shows the share of the cumulative variance explained by the 𝑘-largest eigen-
value (red line, right-axis) and the value of the eigenvalues (blue line, left axis). The share in
cumulative variance was calculated as the average across states.

Based on a graphical analysis and the average variance explained by each factor,
I choose 𝑘 = 2 components as representative of the whole sample. Figure 17 displays
the values of the 10 largest eigenvalues as a blue line and the cumulative variance ex-
plained by adding a new factor in red. The blue line becomes nearly flat after the fifth
factor, indicating that subsequent factors have limited explanatory power. In fact, the
first two components alone explain roughly 80 percent of the total variance. Moreover,
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their geographic distribution depicted in Figure 18 suggests that they are the underlying
components associated with the east and west zones of the country. Given these two
observations, I chose two factors12 for the counterfactual analysis.

Figure 18. Contribution to 𝜎2
�̃� by state

Note: Maps plot the contribution of the first two common factors to the variance of �̃� by state. The intensity of the color
reflects the relevance of the factor over a particular state.

My estimates suggest that a shock of one standard deviation13 in the common com-
ponent reduces the economic activity in 27 out of 48 states and 14 out of 20 industries. At
the state level, the largest contractions are observed in New Jersey (-1.25%) and Lousiana
(-0.85%) as reported by Figure 27 in the appendix. At the industry level, the contraction
in agriculture (-0.98%), utilities (-0.64%), and real estate (-0.54%) would be the most pro-
nounced (see Figure 28 of the appendix). At the aggregate level, these results lead to a
contraction of economic activity close to -0.31 percent (with a standard deviation of 0.22).
To compare this result with respect to the previous models, I expressed those estimates in
terms of standard deviations of �̃� and plotted them in Figure 19. This comparison shows
that the negative impact of the shock in the common factors is not as accentuated as in the
case of a generalized increase in temperature but is still sizable.

7 Concluding remarks

Introducing sector-state heterogeneous sensitivities of productivity to weather fluc-
tuations amplifies the negative effect of a sudden temperature increase. I found that when
both mechanisms are included, the economic activity decreases by 1.14 percent, while
when both are mute, a similar anomaly in temperature contracts the economy by 0.13

12The loading factors Λ and the specific changes in temperature by state are reported in Table 5
13The signs of the shocks have been normalized to generate -on average- an increase in temperature
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Figure 19. Impact of a shock in 𝜏𝑘𝑡 on economic activity

Note: The solid blue line shows the aggregate impact of a shock in the two common factors. The shocks are defined in
terms of standard deviation. The dashed black line displays the effect of a generalized temperature increase from the
model with heterogeneity and production networks. The green line with markers plots the results from the model with
only heterogeneity, while the red dashed line reports the estimates from the model without any of these characteristics.
The responses of the last three lines were computed in terms of standard deviation of �̃� to ease the comparability.

percent. A simple decomposition shows that the estimated heterogeneity across states is
mostly driven by geographical conditions rather than differences in their sectoral compo-
sition. These findings show the relevance of state-specific policies oriented to tackle these
differences. However, as temperature shocks become larger, their impact on the economy
-per unit Celsius- not only intensifies but also spreads significantly, suggesting a role for
common policies. This is true even in not extreme cases, as revealed by a common factor
analysis.

The simplicity and flexibility of my approach, in conjunction with using a long hori-
zon data in production and the short-run scope, are keystones in my analysis. Although
a specific general equilibrium model initially inspired my estimations, their results still
apply to various structures. However, the presence of market inefficiencies can alter my
estimates, and their inclusion is a future source of research.
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Appendix A Data

In this appendix, I present the data sources used for my analysis and describe how I
process them.

A.1 Economic data at geographical level

I obtained the data of economic activity from the Bureau of Economic Analysis (BEA)
historical statistic. They report national account statistics by various levels of geographical
disaggregation such as County level and Metropolitan Statistical Areas (MSAs) since 2001
and State level since 1963 in nominal values and 1977 in real terms. To cover the largest
possible horizon, I preferred to use state-level data at nominal value. Due to weather-
related data limitations, I don’t include the District of Columbia in the analysis. I also
exclude Alaska and Hawaii since I focus my attention on the contiguous United States.
Therefore, I have 48 states in my dataset. Then, I excluded the sectors associated with
government activities, keeping a total of 59 sectors.

To overcome the change in the classification system from the Standard Industrial
Classification to the North American Industry Classification System (NAICS) in 1997, I
followed Yuskavage et al. (2007), who developed concordance tables that allowed me to
chain both datasets. Those tables can be downloaded from the BEA website. The Excel file
comprises one concordance table for the interval 1947-1987 but several from the period
1987-1997. In the last case, I use the table associated with the Gross Domestic Output
accounts (sheet VA). This process gives me three different tables expressed in the NAIC
system that overlap at the end and start of the sample. For example, before the chaining, I
had the year 1997 in two different datasets. One with information on production between
1997 and 2021 and another covering 1987-1997. Then, to avoid any problem related to a
different nominal value in the overlapping years, I chained these tables using gross ratios
of the overlapping year. Table 1 exemplifies this process.

After chaining both tables, I convert the nominal GDP into real terms by deflating
them using state-specific consumer price indices. Studies commonly use the aggregate
consumer price index (CPI) as a deflator to isolate real fluctuations from price movements.
However, the particularities of each state such as different consumer basket structures or
state-specific demand shocks could cause discrepancies between the state-specific price
fluctuations and the national measurement. For example, during local disasters, equilib-
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Table 1. Chaining SIC-based accounts and NAIC-based accounts

rium prices at the state would fluctuate more than the national ones, making the CPI no
longer a good proxy for real movements for that state. To mitigate these possible prob-
lems, I use the series of price indexes by Metropolitan Statistical Area (MSA) and Regional
Division calculated by the Bureau of Labor Statistics. This dataset comprises consumer
price indexes for 21 MSAs and four regions. While the regional CPI started in 1966, the
initial point differs across MSAs, with some starting in 1914 but others late in 2002. Table
2 shows the list of MSAs and regions from which BLS has records about specific CPIs and
their starting dates.
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Table 2. List of Metropolitan Statistical Areas and Regions (BLS)

Code Variable at BLS
Name Full Name Type Initial period

Code 1 Code 2

CUUR0100SA0 CUUS0100SA0 Northeast Northeast

Re
gi

on 1966
CUUR0400SA0 CUUS0400SA0 West West

CUUR0200SA0 CUUS0200SA0 Midwest Midwest

CUUR0300SA0 CUUS0300SA0 South South

CUURS35CSA0 CUUSS35CSA0 Atlanta Atlanta-Sandy Springs-Roswell, GA

M
et

ro
po

lit
an

St
at

is
tic

al
A

re
a

1917

CUURS35ESA0 CUUSS35ESA0 Baltimore Baltimore-Columbia-Towson, MD 1914

CUURS11ASA0 CUUSS11ASA0 Boston Boston-Cambridge-Newton, MA-NH 1914

CUURS23ASA0 CUUSS23ASA0 Chicago Chicago-Naperville-Elgin, IL-IN-WI 1914

CUURS37ASA0 CUUSS37ASA0 Dallas Dallas-Fort Worth-Arlington, TX 1963

CUURS48BSA0 CUUSS48BSA0 Denver Denver-Aurora-Lakewood, CO 1964

CUURS23BSA0 CUUSS23BSA0 Detroit Detroit-Warren-Dearborn, MI 1914

CUURS37BSA0 CUUSS37BSA0 Houston Houston-The Woodlands-Sugar Land, TX 1914

CUURS49ASA0 CUUSS49ASA0 Los Angeles Los Angeles-Long Beach-Anaheim, CA 1914

CUURS35BSA0 CUUSS35BSA0 Miami Miami-Fort Lauderdale-West Palm Beach, FL 1977

CUURS24ASA0 CUUSS24ASA0 Minneapolis Minneapolis-St.Paul-Bloomington, MN-WI 1917

CUURS12ASA0 CUUSS12ASA0 New York New York-Newark-Jersey City, NY-NJ-PA 1914

CUURS12BSA0 CUUSS12BSA0 Philadelphia Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1914

CUURS48ASA0 CUUSS48ASA0 Phoenix Phoenix-Mesa-Scottsdale, AZ 2002

CUURS49CSA0 CUUSS49CSA0 Riverside Riverside-San Bernardino-Ontario, CA 2017

CUURS24BSA0 CUUSS24BSA0 St. Louis St. Louis, MO-IL 1917

CUURS49ESA0 CUUSS49ESA0 San Diego San Diego-Carlsbad, CA 1965

CUURS49BSA0 CUUSS49BSA0 San Francisco San Francisco-Oakland-Hayward, CA 1914

CUURS49DSA0 CUUSS49DSA0 Seattle Seattle-Tacoma-Bellevue WA 1914

CUURS35DSA0 CUUSS35DSA0 Tampa Tampa-St. Petersburg-Clearwater, FL 1987

CUURS35ASA0 CUUSS35ASA0 Washington Washington-Arlington-Alexandria, DC-VA-MD-WV 1914

Note: The table reports the list of Statistical Regions and Metropolitan Statistical Areas that the BLS uses to compute geographically
specific Consumer Price Indexes. In addition, I report the name of the series associated with each CPI and the full name of the MSAs.
Source: Bureau of Labor Statistics

Some MSAs cover multiple states, while others include two or more MSAs. Then, I
follow the next strategy to assign disaggregated CPIs geographically14:

1. If none of the MSA in the list is situated in the specific state, then the regional CPI is
chosen.

2. Then, when only one MSA is located in the specific state, the MSA’s CPI is picked.

14A more detailed structure for the MSAs related to each state can be found in the Excel file called
‘tablemetro.xlsx’.
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3. If multiple MSAs are included in a state, the state’s CPI is computed as the average
of the MSA’s CPIs

Figure 20 shows the evolution of the computed state-specific CPI inflation plotted
in markers and the CPI inflation for the whole United States from 1970 to 2019. We can
appreciate the presence of some significant differences giving us a sense of the relevance
of including MSAs and regional CPIs in any state-based calculation.

Figure 20. Inflation of the CPI by state

Note: Figure shows the evolution of CPI inflation by state (in markers) in comparison to
aggregate inflation (solid blue line). The aggregate CPI inflation was obtained from the
Federal Reserve Bank of Minneapolis.

The growth rate of the real GDP per capita is calculated by taking the first log
difference and subtracting the population growth rate. Estimates of the population at the
state level were obtained from the Federal Reserve Bank of Saint Louis. They provide
annual estimates based on the information released by the United States Census Bureau.
Table 3 shows summary statistics of the growth rate of the GDP per capita at the state level
since 1970, using two different methods of calculation. Column "Aggregate" presents
the average growth rate computed from the aggregate statistics of the state, while the
column "Sector-based" reports the results when the individual growth rate by sector-state
is aggregate using share in nominal state’s GDP as weigh. There are not significance
differences between both results indicating that the level of dissagregation used in my
analysis gives sensible results.
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Table 3. Growth rate per capita by state

Aggregate Sector-based Aggregate Sector-based
State mean std mean std State mean std mean std

Alabama 1.43 3.28 1.49 3.14 Nebraska 1.91 3.58 1.86 3.78
Arizona 1.23 4.23 1.11 4.21 Nevada 0.86 4.02 0.75 3.84
Arkansas 1.33 3.41 1.44 3.48 New Hampshire 1.74 3.49 1.74 3.50
California 1.15 2.89 1.17 2.86 New Jersey 1.38 2.68 1.39 2.55
Colorado 1.61 2.91 1.52 2.92 New Mexico 1.19 3.72 1.14 4.18
Connecticut 1.72 3.21 1.62 3.48 New York 1.35 2.76 1.39 2.83
Delaware 1.62 5.29 1.52 4.64 North Carolina 1.34 3.68 1.42 3.67
Florida 1.26 3.64 1.17 3.59 North Dakota 3.13 7.44 3.13 9.17
Georgia 1.70 3.54 1.73 3.62 Ohio 1.20 3.44 1.23 3.45
Idaho 1.33 3.98 1.06 4.09 Oklahoma 1.60 4.49 1.62 4.86
Illinois 1.42 2.86 1.36 3.04 Oregon 1.12 3.75 1.12 4.17
Indiana 1.19 4.33 1.20 4.22 Pennsylvania 1.36 2.23 1.36 2.32
Iowa 1.72 4.02 1.71 4.40 Rhode Island 1.26 2.77 1.37 2.88
Kansas 1.67 2.66 1.73 2.98 South Carolina 1.53 3.73 1.61 3.67
Kentucky 1.12 3.26 1.07 3.21 South Dakota 2.71 4.64 2.61 5.51
Louisiana 1.19 4.88 1.29 4.91 Tennessee 1.65 3.60 1.70 3.61
Maine 1.40 2.92 1.47 3.02 Texas 1.86 3.45 1.95 3.60
Maryland 1.72 2.71 1.78 2.73 Utah 1.76 3.24 1.76 3.36
Massachusetts 1.74 3.00 1.76 2.99 Vermont 1.22 3.29 1.23 3.21
Michigan 0.85 5.27 0.81 5.46 Virginia 1.72 2.79 1.72 2.76
Minnesota 1.49 3.26 1.46 3.50 Washington 1.20 3.29 1.32 3.53
Mississippi 1.24 3.46 1.26 3.42 West Virginia 1.05 3.12 1.11 3.15
Missouri 1.19 3.13 1.22 3.36 Wisconsin 1.40 3.14 1.41 3.22
Montana 1.17 3.95 1.04 4.46 Wyoming 1.37 7.31 1.56 7.74
Note: The table shows the average growth rate of the GDP per capita by state and its standard deviations. The results below the
column "Aggregate" were computed using the aggregate real GDP at the state level. Results below the column "Sector-Based"
compute the average growth rate as the weighted average of the sector’s growth rates using the share in nominal GDP as weigh.
The growth rate was approximated by the first log difference.
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Table 4. List of sector present in the estimation sample

NAIC Sector Industry Tradable NAIC Sector Industry Tradable

721 Accommodation Accomodation N 315 Apparel, leather, and allied product manufactu... Manuf. Nondurable Y
722 Food services and drinking places Accomodation N 325 Chemical manufacturing Manuf. Nondurable Y
561 Administrative and support services Admin support N 311 Food and beverage and tobacco product manufact... Manuf. Nondurable Y
562 Waste management and remediation services Admin support N 322 Paper manufacturing Manuf. Nondurable Y
111 Farms Agriculture N 324 Petroleum and coal products manufacturing Manuf. Nondurable Y
113 Forestry, fishing, and related activities Agriculture N 326 Plastics and rubber products manufacturing Manuf. Nondurable Y
23 Construction Construction N 323 Printing and related support activities Manuf. Nondurable Y
61 Educational services Education serv. N 313 Textile mills and textile product mills Manuf. Nondurable Y
713 Amusement, gambling, and recreation industries Entertainment N 212 Mining (except oil and gas) Mining Y
711 Performing arts, spectator sports, museums, an... Entertainment N 211 Oil and gas extraction Mining N
525 Funds, trusts, and other financial vehicles Finance N 213 Support activities for mining Mining N
524 Insurance carriers and related activities Finance N 81 Other services Others N
521 Monetary Authorities- central bank, credit int... Finance N 54 Professional, scientific, and technical services Prof. services N
523 Securities, commodity contracts, and other fin... Finance N 531 Real estate Real estate N
621 Ambulatory health care services Health care N 532 Rental and leasing services and lessors of non... Real estate N
622 Hospitals and Nursing and residential care fac... Health care N 44 Retail trade Retail trade Y
624 Social assistance Health care N 481 Air transportation Transportation N
515 Broadcasting (except Internet) and telecommuni... Information N 487 Other transportation and support activities Transportation N
518 Data processing, hosting, and other informatio... Information N 486 Pipeline transportation Transportation N
512 Motion picture and sound recording industries Information N 482 Rail transportation Transportation N
511 Publishing industries (except Internet) Information Y 485 Transit and ground passenger transportation Transportation N
55 Management of companies and enterprises Management Y 484 Truck transportation Transportation N
334 Computer and electronic product manufacturing Manuf. Durable Y 493 Warehousing and storage Transportation Y
335 Electrical equipment, appliance, and component... Manuf. Durable Y 483 Water transportation Transportation N
332 Fabricated metal product manufacturing Manuf. Durable Y 22 Utilities Utilities N
337 Furniture and related product manufacturing Manuf. Durable Y 42 Wholesale trade Wholesale trade Y
333 Machinery manufacturing Manuf. Durable Y
339 Miscellaneous manufacturing Manuf. Durable Y
3361 Motor vehicles, bodies and trailers, and parts... Manuf. Durable Y
327 Nonmetallic mineral product manufacturing Manuf. Durable Y
3364 Other transportation equipment manufacturing Manuf. Durable N
331 Primary metal manufacturing Manuf. Durable Y
321 Wood product manufacturing Manuf. Durable Y

Note: Some of the NAIC are not equal to the reported in the national accounts due to I recoded them as a number, usually taking
of the NAICs code as reference. The classification of tradable and non tradable was based in the CFS tables that report interregional
trading

A.1.1 List of tradable and nontradable sectors

Although the estimations were made at the sector level, results are presented at the
industry level to ease the presentation. Table 4 shows the list of the considered sectors,
their industry, and whether they are treated as tradable or nontradable based on the CFS
tables.

A.2 Weather variables

The variables related to weather conditions were obtained from the National Oceanic
and Atmospheric Administration. The routines of downloading and processing are in the
files “dataweather.do” and “dataweather_county.do”. Since the scope of this study lies
in analyzing the short and medium-run effects of weather fluctuations, I prefer to use
temperature anomalies (�̃�𝑠,𝑡,ℎ) instead of absolute levels. I define a temperature anomaly
as the difference between a temperature indicator (𝜏𝑠,𝑡) and a reference point (�̄�(ℎ)𝑠,𝑡 ). In
the main text, the considered temperature indicator was the average temperature and
the reference point was the rolling average of these temperatures in a 10-year window.
Regarding the latter, the World Meteorological Organization (WMO) recommends using
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the 30-year window average and changing it every decade15 to describe a climate normal.
Although this bin size can capture the evolution [and fluctuations] of climate conditions,
it is less sensible, from an economic perspective, when agents try to anticipate future
conditions before taking their best actions. Therefore, I use a shorter span to define
the reference point. In particular, I choose a ten-year window to match the average
investment plan’s horizon of general partners investors (GP) as is shown by Lerner and
Schoar (2004). On the other hand, the choice of using average temperatures might raise
concerns about how representative they are in comparison to minimum or maximum
temperatures. In figure 21, I plot a set of scatterplots that show the relation between the
temperature anomalies used in the main results and other proxies of weather fluctuations.
The alternative measures of weather anomalies in panels (a) and (b) were calculated using
minimum and maximum temperature as indicators and a window of 10 years as the
reference point. In the case of panels (c) and (d), I change the reference point to be 20-year
window and 30-year window, respectively. In all the cases, we see a close relationship
characterized by a correlation coefficient larger than 0.9. These exploratory results suggest
that the choice of the temperature indicator would affect the paper’s conclusions.

15For example, the average temperature from 1980-2010 is the reference base for temperatures in 2015
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Figure 21. Relation between temperature anomalies indicators

(a) �̃�𝑚𝑒𝑎𝑛 vs �̃�𝑚𝑖𝑛 (b) �̃�𝑚𝑒𝑎𝑛 vs �̃�𝑚𝑎𝑥

(c) �̃�10𝑦
𝑚𝑒𝑎𝑛 vs �̃�20𝑦

𝑚𝑒𝑎𝑛 (d) �̃�10𝑦
𝑚𝑒𝑎𝑛 vs �̃�30𝑦

𝑚𝑒𝑎𝑛

Note: Each panel depicts a scatterplot between temperature anomalies in the average temper-
ature and other proxies for weather anomalies.
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Appendix B Technical Appendix

From the solution of the model, we have that the first log-difference of the real output
d ln 𝑦

𝑗
𝑛 can be expressed as:

d ln 𝑦
𝑗
𝑛 =

d ln 𝑧
𝑗
𝑛(�̃�𝑛)

d�̃�𝑛
d�̃�𝑛 = 𝑓

𝑗
𝑛(�̃�𝑛)

If we take a second order approximation of 𝑓 𝑗𝑛(�̃�) around the expected value of the weather
shocks E[�̃�𝑛] = 0

Δ𝑦𝑛𝑗𝑡 = 𝑓
𝑗
𝑛(�̃�) ≈ 𝑓 (0) + 𝑓 ′𝑛𝑗(0)�̃� +

1
2 𝑓 ′′𝑛𝑗(0)�̃�

2 = 𝛼0 + �(1)
𝑛𝑗
�̃� + �(2)

𝑛𝑗
�̃�2 (36)

where �(1)
𝑛𝑗

and �(2)
𝑛𝑗

represent the linear and quadratic sensitivity of production from sector
𝑗 in the state 𝑛 to weather shocks. We can decompose them into:

�(𝑖)
𝑛𝑗

= �(𝑖)
𝑛 + �(𝑖)

𝑗
+ �̃(𝑖)

𝑛𝑗
𝑖 = {1, 2}

where �(𝑖)
𝑛 is a state-specific component common to all sectors within the same state

𝑛, �(𝑖)
𝑗

is a sector-specific component constant across states, and �̃(𝑖)
𝑛𝑗

is random variable
with mean-zero for all state and all sectors. It reflects state-sector specific interactions.
Including it into equation 36 leads to:

Δ𝑦𝑛𝑗𝑡 = 𝛼0 +
(
�(1)
𝑛 + �(1)

𝑗

)
�̃�𝑛𝑡 +

(
�(2)
𝑛 + �(2)

𝑗

)
�̃�2
𝑛𝑡 + �̃1

𝑛𝑗 �̃�𝑛𝑡 + �̃2
𝑛𝑗 �̃�

2
𝑛𝑡︸             ︷︷             ︸

𝜖𝑛𝑗𝑡

Δ𝑦𝑛𝑗𝑡 = 𝛼0 +
(
�(1)
𝑛 + �(1)

𝑗

)
�̃�𝑛𝑡 +

(
�(2)
𝑛 + �(2)

𝑗

)
�̃�2
𝑛𝑡 + 𝜖𝑛𝑗𝑡 (37)

Since �̃𝑛𝑗 and �̃�𝑛 are independent random variables is easy to show that E

[
�̃(1)
𝑛𝑗
�̃�𝑛
]
= 0

and E

[
�̃(2)
𝑛𝑗
�̃�2
𝑛

]
= 0 for every state and sector.

Consistency of the estimates: The consistency of �̂(𝑖)
𝑛 , and �̂(𝑖)

𝑗
for 𝑖 = {1, 2} depends on

the covariance between �̃�𝑛𝑡 , �̃�2
𝑛𝑡 , and 𝜖𝑛𝑗𝑡 . To show the consistency of the estimator is

enough to show that the covariances between �̃�𝑛𝑡 and 𝜖𝑛𝑗𝑡 and between �̃�2
𝑛𝑡 , and 𝜖𝑛𝑗𝑡 are 0

for every state and sector:
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- The 𝑛-covariance between �̃�𝑛𝑡 and 𝜖𝑛𝑗𝑡 is:

E𝑛

[
(�̃�𝑛𝑡)

(
𝜖𝑛𝑗𝑡

) ]
=

E𝑛

[
�̃(1)
𝑛𝑗

]
E𝑛

[
�̃�2
𝑛𝑗

]
+ 𝑐𝑜𝑣𝑛

(
�̃1
𝑛𝑗 , �̃�

2
𝑛𝑗

)
+ E𝑛

[
�̃(2)
𝑛𝑗

]
E𝑛

[
�̃�3
𝑛𝑗

]
+ 𝑐𝑜𝑣𝑛

(
�̃2
𝑛𝑗 , �̃�

3
𝑛𝑗

)
= 0

- The 𝑗-covariance between �̃�𝑛𝑡 and 𝜖𝑛𝑗𝑡 is:

E𝑗

[
(�̃�𝑛𝑡)

(
𝜖𝑛𝑗𝑡

) ]
=

E𝑗

[
�̃(1)
𝑛𝑗

]
E𝑗

[
�̃�2
𝑛𝑗

]
+ 𝑐𝑜𝑣 𝑗

(
�̃1
𝑛𝑗 , �̃�

2
𝑛𝑗

)
+ E𝑗

[
�̃(2)
𝑛𝑗

]
E𝑗

[
�̃�3
𝑛𝑗

]
+ 𝑐𝑜𝑣 𝑗

(
�̃2
𝑛𝑗 , �̃�

3
𝑛𝑗

)
= 0

- The 𝑛-covariance between �̃�2
𝑛𝑡 and 𝜖𝑛𝑗𝑡 is:

E𝑛

[(
�̃�2
𝑛𝑡

) (
𝜖𝑛𝑗𝑡

) ]
=

E𝑛

[
�̃(1)
𝑛𝑗

]
E𝑛

[
�̃�3
𝑛𝑗

]
+ 𝑐𝑜𝑣𝑛

(
�̃1
𝑛𝑗 , �̃�

3
𝑛𝑗

)
+ E𝑛

[
�̃(2)
𝑛𝑗

]
E𝑛

[
�̃�4
𝑛𝑗

]
+ 𝑐𝑜𝑣𝑛

(
�̃2
𝑛𝑗 , �̃�

4
𝑛𝑗

)
= 0

- The 𝑗-covariance between �̃�2
𝑛𝑡 and 𝜖𝑛𝑗𝑡 is:

E𝑗

[(
�̃�2
𝑛𝑡

) (
𝜖𝑛𝑗𝑡

) ]
=

E𝑗

[
�̃(1)
𝑛𝑗

]
E𝑗

[
�̃�3
𝑛𝑗

]
+ 𝑐𝑜𝑣 𝑗

(
�̃1
𝑛𝑗 , �̃�

3
𝑛𝑗

)
+ E𝑗

[
�̃(2)
𝑛𝑗

]
E𝑗

[
�̃�4
𝑛𝑗

]
+ 𝑐𝑜𝑣 𝑗

(
�̃2
𝑛𝑗 , �̃�

4
𝑛𝑗

)
= 0
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Appendix C Sensitivity analysis, additional figures

Figure 22. Distribution of 𝒢𝑙 𝑔(�̃�𝑜), alternative models for heterogeneous responses

(a) max 𝜏 (b) min 𝜏 (c) 20-year 𝜏

(d) 30-year 𝜏 (e) Sectoral Price (f) Sector-time FE

(g) 5-year reference

Figure 23. Aggregate effect of �̃�, alternative models for heterogeneous responses
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Figure 24. Distribution of 𝒢𝑙 𝑔(�̃�𝑜), alternative models for networks responses

(a) max 𝜏 (b) min 𝜏 (c) 20-year 𝜏

(d) 30-year 𝜏 (e) Sectoral Price (f) Sector-time FE

(g) 5-years reference

Figure 25. Aggregate effect of �̃�, alternative models for networks
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Appendix D Loading Factors

Table 5. Loading factors and total change in temperature

state Λ1 Λ2 Δ�̃� state Λ1 Λ2 Δ�̃�

AL -0.82 -0.16 0.51 NC -0.78 -0.37 0.61
AR -0.93 0.11 0.51 ND -0.75 0.48 0.31
AZ 0.14 0.73 -0.41 NE -0.76 0.57 0.16
CA 0.26 0.75 -0.49 NH -0.78 -0.17 0.62
CO -0.39 0.80 -0.23 NJ -0.89 -0.36 0.73
CT -0.84 -0.27 0.67 NM -0.11 0.56 -0.21
DE -0.87 -0.39 0.71 NV 0.02 0.91 -0.53
FL -0.48 -0.26 0.36 NY -0.89 -0.19 0.73
GA -0.75 -0.26 0.54 OH -0.95 -0.18 0.81
IA -0.88 0.36 0.49 OK -0.81 0.32 0.30
ID -0.24 0.85 -0.41 OR -0.09 0.79 -0.39
IL -0.96 0.10 0.69 PA -0.94 -0.28 0.77
IN -0.97 -0.07 0.78 RI -0.79 -0.32 0.63
KS -0.81 0.52 0.21 SC -0.76 -0.32 0.58
KY -0.93 -0.15 0.69 SD -0.74 0.54 0.22
LA -0.81 -0.04 0.43 TN -0.91 -0.13 0.62
MA -0.81 -0.27 0.64 TX -0.61 0.17 0.21
MD -0.90 -0.37 0.73 UT -0.10 0.89 -0.51
ME -0.64 -0.07 0.49 VA -0.87 -0.36 0.66
MI -0.92 0.03 0.77 VT -0.79 -0.17 0.66
MN -0.83 0.36 0.51 WA -0.23 0.65 -0.25
MO -0.94 0.24 0.53 WI -0.90 0.22 0.66
MS -0.86 -0.04 0.48 WV -0.88 -0.32 0.72
MT -0.56 0.67 -0.10 WY -0.45 0.85 -0.29
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Figure 26. Contribution to 𝜎2
�̃� by state

Figure 27. Impact of a shock in 𝜏𝑘𝑡 on economic activity, by state
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Figure 28. Impact of a shock in 𝜏𝑘𝑡 on economic activity, by industry
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